CETIFICATION

SDG No:

JC20934

Laboratory:

Accutest, New Jersey

Site:

BMS, Building 5 Area, PR

Matrix:

Soil/Groundwater

Humacao, PR

SUMMARY:

Groundwater and soil samples (Table 1) were collected on the BMSMC facility - Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken May 23-24, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for the ABN TCL Special List (1,4-Dioxane and Naphthalene were analyzed following the SIM technique); TCL pesticides list; and for low molecular weight alcohols (LMWA) the results were reported under SDG No.: JC20934. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
JC20934-1	RA4-GWS	Groundwater	ABN TCL special list; 1,-4- dioxane and Naphthalene (SIM); LMWA
JC20934-2	RA8 (5-6)	Soil	ABN TCL special list; 1,-4- dioxane and Naphthalene (SiM); LMWA
JC20934-3	RA8D (5-6)	Soil	ABN TCL special list; 1,-4- dioxane and Naphthalene (SIM); LMWA
JC20934-4	MW21 (7-8)	Soil	ABN TCL special list; 1,-4- dioxane and Naphthalene (SIM); LMWA
JC20934-5	RA8-GWD	Groundwater	ABN TCL special list; 1,-4- dioxane and Naphthalene (SIM); LMWA
JC20934-6	RA8-GWS	Groundwater	ABN TCL special list; 1,-4- dioxane and Naphthalene (SIM); LMWA

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature: Date:

Report of Analysis

Page 1 of 3

Client Sample ID:	RA4-GWS
Lab Sample ID:	TC20934-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: Date Received: 05/25/16

05/23/16

Percent Solids:

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	6P26386.D	1	05/26/16	IJ	05/25/16	OP94258	E6P1228
Run #2							

Initial Volume Final Volume 900 ml

Run #1

1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	5.6	0.91	ug/l		
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	0.99	ug/l		
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l		
105-67-9	2,4-Dimethylphenol	ND	5.6	2.7	ug/l		
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l		
534-52-1	4,6-Dinitro-o-cresol	ND	5.6	1.4	ug/l		
95-48-7	2-Methylphenol	ND	2.2	0.99	ug/l		
	3&4-Methylphenol	ND	2.2	0.98	ug/l		2
88-75-5	2-Nitrophenol	ND	5.6	1.1	ug/l		
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l		
87-86-5	Pentachlorophenol	ND	5.6	1.5	ug/l		
108-95-2	Phenol	ND	2.2	0.44	ug/l		
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.6	1.6	ug/l		
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.5	ug/l		
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.0	ug/l		
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l		
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l		
98-86-2	Acetophenone	ND	2.2	0.23	ug/I		
120-12-7	Anthracene	ND	1.1	0.23	ug/l		
1912-24-9	Atrazine	ND	2.2	0.50	ug/l		
100-52-7	Benzaldehyde	ND	5.6	0.32	ug/l		
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l		the state of the same of the s
50-32-8	Велго(а)ругеле	ND	1.1	0.24	ug/I		BL ASOCIADO DE
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l		OF MOUNTO DE
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.38	ug/l		All Control of the Co
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l		Rafael Infante
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.45	ug/l		Méndez
85-68-7	Butyl benzyl phthalate	ND	2.2	0.51	ug/l		1 1 C # 1888
92-52-4	1,1'-Biphenyl	ND	1.1	0.24	ug/l		1000 miles
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l		
106-47-8	4-Chloroaniline	4.8	5.6	0.38	ug/l	J	CHIMCO LICENCIA
86-74-8	Carbazole	ND	Lit	0.25	ug/l	-	SIN THE STATE OF T

MDL = Method Detection Limit

J = Indicates an estimated value B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range

Client Sample ID: Lab Sample ID:

RA4-GWS JC20934-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: Date Received:

05/23/16 05/25/16

Percent Solids: n/a

ABN TCL Special List

1 III V 1 OLI Dipolati Jili									
CAS No.	Compound	Result	RL	MDL	Units	Q			
105-60-2	Caprolactam	ND	2.2	0.72	ug/l				
218-01-9	Chrysene	ND	1.1	0.20	ug/l				
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l				
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.28	ug/l				
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.45	ug/l				
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.41	ug/l				
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.61	ug/l				
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.53	ug/l				
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/l				
123-91-1	1,4-Dioxane	49:6	1.1	0.73	ug/l				
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.37	սց/1				
132-64-9	Dibenzofuran	ND	5.6	0.24	ug/l				
84-74-2	Di-n-butyl phthalate	ND	2.2	0.55	ug/l				
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l				
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l				
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l				
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l				
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l				
86-73-7	Fluorene	ND	1.1	0.19	ug/l				
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l				
87-68-3	Hexachlorobutadiene	ND	1.1	0.55	ug/l				
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l				
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l				
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.37	ug/l				
78-59- 1	Isophorone	ND	2.2	0.31	ug/l				
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/l				
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/l				
88-74-4	2-Nitroaniline	ND	5.6	0.31	ug/l				
99-09-2	3-Nitroaniline	ND	5.6	0.43	ug/l				
100-01-6	4-Nitroaniline	ND	5.6	0.49	ug/l				
98-95-3	Nitrobenzene	ND	2.2	0.71	ug/l				
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.53	ug/l				
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.25	ug/l				
85-01-8	Phenanthrene -	ND	1.1	0.19	ug/l				
129-00-0	Pyrene	ND	1.1	0.24	ug/l				
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/l				
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its				
367-12-4	2-Fluorophenol	34%		14-8	8%				

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: RA4-GWS Lab Sample ID: JC20934-1

AQ - Ground Water

Date Sampled: 0

05/23/16 : 05/25/16

Matrix: Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
4165-62-2	Phenol-d5	26%		10-110%
118-79-6	2,4,6-Tribromophenol	61%		39-149%
4165-60-0	Nitrobenzene-d5	61%		32-128%
321-60-8	2-Fluorobiphenyl	64%		35-119%
1718-51-0	Terphenyl-d14	49%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID:

RA4-GWS JC20934-1

AQ - Ground Water

Date Sampled: 05/23/16 Date Received: 05/25/16

Matrix: Method:

SW846 8270D BY SIM SW846 3510C

Percent Solids:

Project: BMSMC, Building 5 Area, PR

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 4P16434.D 05/26/16 05/25/16 E4P872 1 LK OP94258A

Run#2

Limits

Run #2

Initial Volume Final Volume Run #1

Surrogate Recoveries

Run #2

CAS No.

900 ml 1.0 ml

CAS No. Compound Result RL MDŁ Units Q

Run#1

91-20-3 Naphthalene 0.1500.11 0.033 ug/l

4165-60-0 Nitrobenzene-d5 79% 24-125% 321-60-8 2-Fluorobiphenyl 59% 19-127% 1718-51-D Terphenyl-d14 66% 10-119%

Rafael Infa Méndez LIC # 188

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: **RA4-GWS** Lab Sample ID: JC20934-1

Matrix: Method:

Project:

AQ - Ground Water

SW846-8015C (DAI) BMSMC, Building 5 Area, PR Date Sampled: Date Received:

05/23/16 05/25/16

Percent Solids:

Run #2		DF 1	Analyzed 05/26/16	By XPL	Prep Date	Prep Batch n/a	Analytical Batch GGH5301
Kun #2	2						

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5 78-83-1 67-63-0	Ethanol Isobutyl Alcohol Isopropyl Alcohol	ND ND ND	100 100 100	55 36 68	ug/l ug/l ug/l	
71-23-8 71-36-3 78-92-2 67-56-1	n-Propyi Alcohol n-Butyl Alcohol sec-Butyl Alcohol Methanol	ND ND ND ND	100 100 100 200	43 87 66 71	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim		
111-27-3 111-27-3	Hexanol Hexanol	89% 97%			45% 45%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 3

Client Sample ID: Lab Sample ID:	RA
Lab Sample ID:	JC2

8 (5-6) 20934-2

Date Sampled: 05/24/16

Matrix: Method:

SO - Soil SW846 8270D SW846 3546 Date Received: 05/25/16

Project:

BMSMC, Building 5 Area, PR

Percent Solids: 82.9

1		File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	Run #1	6P26614.D	1	06/02/16	AC	05/26/16	OP94277	E6P1235
1	Run #2							

Initial Weight Final Volume 30.6 g

Run #1 Run #2 1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	79	19	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	200	24	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	200	34	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	200	70	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	200	150	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	200	42	ug/kg	
95-48-7	2-Methylphenol	ND	79	25	ug/kg	
	3&4-Methylphenol	ND	79	32	ug/kg	
88-75-5	2-Nitrophenol	ND	200	26	ug/kg	
100-02-7	4-Nitrophenol	ND	390	110	ug/kg	
87-86-5	Pentachlorophenol	ND	200	37	ug/kg	
108-95-2	Phenol	ND	79	21	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	200	26	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	200	30	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	200	23	ug/kg	
83-32-9	Acenaphthene	ND	39	14	ug/kg	
208-96-8	Acenaphthylene	ND	39	20	ug/kg	
98-86-2	Acetophenone	ND	200	8.5	ug/kg	
120-12-7	Anthracene	ND	39	24	ug/kg	
1912-24-9	Atrazine	ND	79	17	ug/kg	
56-55-3	Benzo(a)anthracene	ND	39	11	ug/kg	
50-32-8	Benzo(a)pyrene	ND	39	18	ug/kg	
205-99-2	Benzo(b) fluoranthene	ND	39	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	39	20	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	39	18	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	79	15	ug/kg	- 1
85-68-7	Butyl benzyl phthalate	ND	79	9.6	ug/kg	- {
92-52-4	1,1'-Biphenyl	ND	79	5.4	ug/kg	- 1
100-52-7	Benzaldehyde	ND	200	9.8	ug/kg	
91-58-7	2-Chloronaphthalene	ND	79	9.4	ug/kg	
106-47-8	4-Chloroaniline	ND	200	14	ug/kg	
86-74-8	Carbazole	ND	79	5.7	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method:

Project:

Report of Analysis

Client Sample ID: RA8 (5-6) Lab Sample ID: JC20934-2 Matrix: SO - Soil

SW846 8270D SW846 3546

BMSMC, Building 5 Area, PR

Date Sampled: 05/24/16 Date Received: 05/25/16

Percent Solids: 82.9

Q

ABN TCL Special List

	•				
CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	79	16	ug/kg
218-01-9	Chrysene	ND	39	12	ug/kg
111-91-1	bis(2-Chloroethoxy)methane	ND	79	8.4	ug/kg
111-44-4	bis(2-Chloroethyl)ether	ND	79	17	ug/kg
108-60-1	bis(2-Chloroisopropyl)ether	ND	79	14	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	79	13	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	39	12	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	39	20	ug/kg
91-94-1	3,3'-Dichlorobenzidine	ND	79	33	ug/kg
53-70-3	Dibenzo(a,h)anthracene	ND	39	17	ug/kg
132-64-9	Dibenzofuran	ND	79	16	ug/kg
84-74-2	Di-n-butyl phthalate	ND	79	6.4	ug/kg
117-84-0	Di-n-octyl phthalate	ND	79	9.8	ug/kg
84-66-2	Diethyl phthalate	ND	79	8.4	ug/kg
131-11-3	Dimethyl phthalate	ND	79	7.0	ug/kg
117-81-7	bis(2-Ethylhexyl)phthalate	ND	79	9.2	ug/kg
206-44-0	Fluoranthene	ND	39	18	ug/kg
86-73-7	Fluorene	ND	39	18	ug/kg
118-74-1	Hexachlorobenzene	ND	79	10	ug/kg
87-68-3	Hexachlorobutadiene	ND	39	16	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	390	16	ug/kg
67-72-1	Hexachloroethane	ND	200	20	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	39	18	ug/kg
78-59-1	Isophorone	ND	79	8.4	ug/kg
90-12-0	1-Methylnaphthalene	ND	79	7.7	ug/kg
91-57-6	2-Methylnaphthalene	ND	79	8.9	ug/kg
88-74-4	2-Nitroaniline	ND	200	9.3	ug/kg
99-09-2	3-Nitroaniline	ND	200	9.9	ug/kg
100-01-6	4-Nitroaniline	ND	200	10	ug/kg
98-95-3	Nitrobenzene	ND	79	15	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	79	11	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	200	14	ug/kg
85-01-8	Phenanthrene	ND	39	13	ug/kg
129-00-0	Pyrene	ND	39	13	ug/kg
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	200	10	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
367-12-4	2-Fluorophenol	73%		30-1	06%
4165-62-2	Phenol-d5	74%		30-1	06%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method:

Project:

Report of Analysis

Client Sample ID: RA8 (5-6) Lab Sample ID: JC20934-2 Matrix:

SO - Soil

SW846 8270D SW846 3546

Date Sampled: 05/24/16 Date Received: 05/25/16 Percent Solids: 82.9

BMSMC, Building 5 Area, PR

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	77%		24-140%
4165-60-0	Nitrobenzene-d5	86%		26-122%
321-60-8	2-Fluorobiphenyl	85%		36-112%
1718-51-0	Terphenyl-d14	93%		36-132%

MDL = Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range

^{] =} Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sam Lab Samp Matrix: Method: Project:			4-2 il 8270D BY	SIM SW846 5 Area, PR	3546		Date	Received:	95/24/16 95/25/16 92.9
Run #1 Run #2	File ID 4P1664		DF 1	Analyzed 06/04/16	By JJ	Prep D 05/26/1		Prep Batch OP94277A	Analytical Batch E4P886
Run #1 Run #2	Initial 30.6 g	Weight	Final Vo	lume					
CAS No.	Comp	ound		Result	RL	MDL	Units	Q	
123-91-1 91-20-3	1,4-Di Naphtl	oxane ^a halene		ND ND	3.9 3.9	0.79 0.48	ug/kg ug/kg		
CAS No.	Surro	gate Rec	overies	Run# 1	Run# 2	Lim	its		
4165-60-0 321-60-8 1718-51-0	2-Fluo	enzene-d robiphen envl-d14	_	85% 53% 81%		12-1	38% 48% 157%		

(a) Not accredited for this compound at the time of analysis, but all method requirements were followed.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

XPL

Prep Date

Page 1 of 1

Client Sample ID: Lab Sample ID:

RA8 (5-6) JC20934-2

SO - Soil

Date Sampled: Date Received:

Q

05/24/16 05/25/16

Matrix: Method:

SW846-8015C (DAI)

DF

1

Percent Solids: 82.9

Project:

BMSMC, Building 5 Area, PR

Analyzed

05/25/16

Prep Batch **Analytical Batch GGH5300**

Run #1 Run #2

Initial Weight

Run #1 Run #2

5.1 g

File ID

GH105208.D

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	120	82	ug/kg
78-83-1	Isobutyl Alcohol	ND	120	70	ug/kg
67-63-0	Isopropyl Alcohol	ND	120	68	ug/kg
71-23-8	n-Propyl Alcohol	ND	120	48	ug/kg
71-36-3	n-Butyl Alcohol	ND	120	64	ug/kg
78-92-2	sec-Butyl Alcohol	ND	120	63	ug/kg
67-56-1	Methanol	ND	240	57	ug/kg
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	its
111-27-3	Hexanol	84%		52-1	41%
111-27-3	Hexanol	84%		52-1	41%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID:	RA8D (5-6)
Lab Sample ID:	JC20934-3

Matrix: Method:

Project:

SO - Soil

SW846 8270D SW846 3546

Date Sampled: 05/24/16

Date Received: 05/25/16 Percent Solida: 84.0

BMSMC, Building 5 Area, PR

1	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	6P26615.D	1	06/02/16	AC	05/26/16	OP94277	E6P1235

Run #2

Initial Weight Final Volume 30.7 g

Run #1 Run #2 $1.0 \, ml$

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	78	19	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	24	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	33	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	69	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	190	150	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	190	41	ug/kg	
95-48-7	2-Methylphenol	ND	78	25	ug/kg	
	3&4-Methylphenol	ND	78	32	ug/kg	
88-75-5	2-Nitrophenol	ND	190	26	ug/kg	
100-02-7	4-Nitrophenol	ND	390	100	ug/kg	
87-86-5	Pentachiorophenol	ND	190	36	ug/kg	
108-95-2	Phenol	ND	78	20	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	190	26	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	29	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	23	ug/kg	
83-32-9	Acenaphthene	ND	39	13	ug/kg	
208-96-8	Acenaphthylene	ND	39	20	ug/kg	
98-86-2	Acetophenone	ND	190	8.3	ug/kg	
120-12-7	Anthracene	ND	39	24	ug/kg	
1912-24-9	Atrazine	ND	78	17	ug/kg	
56-55-3	Benzo(a)anthracene	ND	39	11	ug/kg	
50-32-8	Benzo(a)pyrene	ND	39	18	ug/kg	
205-99-2	Benzo(b) fluoranthene	ND	39	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	39	19	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	39	18	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	78	15	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	78	9.5	ug/kg	
92-52-4	1,1'-Biphenyl	ND	78	5.3	ug/kg	
100-52-7	Benzaldehyde	ND	190	9.6	ug/kg	
91-58-7	2-Chloronaphthalene	ND	78	9.2	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	ND	78	5.6	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E - Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Method:

Project:

Report of Analysis

Client Sample ID: RA8D (5-6)
Lab Sample ID: JC20934-3
Matrix: SO - Soil

SO - Soil SW846 8270D SW846 3546

BMSMC, Building 5 Area, PR

Date Sampled: 05/24/16 Date Received: 05/25/16 Percent Solids: 84.0

ABN TCL Special List

	-					
CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	78	15	ug/kg	
218-01-9	Chrysene	ND	39	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	78	8.3	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	78	17	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	78	14	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	78	13	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	39	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	39	19	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	78	32	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	39	17	ug/kg	
132-64-9	Dibenzofuran	ND	78	16	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	78	6.3	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	78	9.7	ug/kg	
84-66-2	Diethyl phthalate	ND	78	8.3	ug/kg	
131-11-3	Dimethyl phthalate	ND	78	6.9	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	78	9.1	ug/kg	
206-44-0	Fluoranthene	ND	39	17	ug/kg	
86-73-7	Fluorene	ND	39	18	ug/kg	
118-74-1	Hexachlorobenzene	ND	78	9.8	ug/kg	
87-68-3	Hexachlorobutadiene	ND	39	16	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	390	15	ug/kg	
67-72-1	Hexachloroethane	ND	190	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	39	18	ug/kg	
78-59-1	Isophorone	ND	78	8.3	ug/kg	
90-12-0	1-Methylnaphthalene	ND	78	7.6	ug/kg	
91-57-6	2-Methylnaphthalene	ND	78	8.8	ug/kg	
88-74-4	2-Nitroaniline	ND	190	9.2	ug/kg	
99-09-2	3-Nitroaniline	ND	190	9.7	ug/kg	
100-01-6	4-Nitroaniline	ND	190	10	ug/kg	
98-95-3	Nitrobenzene	ND	78	15	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	78	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	14	ug/kg	
85-01-8	Phenanthrene	ND	39	13	ug/kg	
129-00-0	Pyrene	ND	39	12	ug/kg	3
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	9.8	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	67%		30-1	06%	
4165-62-2	Phenol-d5	68%		30-1		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: RA8D (5-6) Lab Sample ID: JC20934-3

Matrix: SO - Soil

Method: SW846 8270D SW846 3546 Project: BMSMC, Building 5 Area, PR Date Sampled: 05/24/16 Date Received: 05/25/16

Percent Solids: 84.0

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	66%		24-140%
4165-60-0	Nitrobenzene-d5	77%		26-122%
321-60-8	2-Fluorobiphenyl	77%		36-112%
1718-51-0	Terphenyl-d14	83%		36-132%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID:	RA8D (5-6)
Lab Sample ID:	JC20934-3

Initial Weight

Matrix: Method:

Project:

SO - Soil

SW846 8270D BY SIM SW846 3546 BMSMC, Building 5 Area, PR

Final Volume

Date Sampled: 05/24/16 Date Received: 05/25/16

Percent Solids: 84.0

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	4P16647.D	1	06/04/16]]	05/26/16	OP94277A	E4P886
Run #2							

Run #1 Run #2	30.7 g 1.0 m	nl				_
CAS No.	Compound	Result	RL	MDL	Units	Q
123-91-1	1,4-Dioxane a	ND	3.9	0.78	ug/kg	
91-20-3	Naphthalene	ND	3.9	0.47	ug/kg	
CAS No.	Surrogate Recoverie	Run#1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	76%		15-1	138%	
321-60-8	2-Fluorobiphenyl	52%		12-1	148%	
1718-51-0	Terphenyl-d14	73%		10-1	157%	

(a) Not accredited for this compound at the time of analysis, but all method requirements were followed.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

By

XPL

Page 1 of 1

Client Sample ID: Lab Sample ID:

RA8D (5-6) JC20934-3

Matrix: Method: SO - Soil

SW846-8015C (DAI)

DF

1

Date Sampled:

05/24/16

Date Received:

05/25/16

Percent Solids: 84.0

Project: BMSMC, Building 5 Area, PR

Run #1 Run #2 File ID GH105209.D

Analyzed 05/25/16

Prep Date n/a

Prep Batch n/a

Analytical Batch GGH5300

Initial Weight

Run #1

Run #2

Low Molecular Alcohol List

5.0 g

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	120	82	ug/kg	
78-83-1	Isobutyl Alcohol	ND	120	70	ug/kg	
67-63 -0	Isopropyl Alcohol	ND	120	68	ug/kg	
71-23-В	n-Propyl Alcohol	ND	120	48	ug/kg	
71-36-3	n-Butyl Alcohol	ND	120	65	ug/kg	
78-92-2	sec-Butyl Alcohol	ND	120	63	ug/kg	
67-56-1	Methanol	ND	240	57	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
111-27-3	Нехало	79%		52-1	41%	
111-27-3	Hexanol	89%			41%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID:	MW21 (7-8)
Lab Sample ID:	JC20934-4

Matrix: Method:

Project:

SO - Soil

SW846 8270D SW846 3546 BMSMC, Building 5 Area, PR

05/24/16 Date Sampled: Date Received: 05/25/16

Percent Solida: 82.4

Q

	File ID	DF	Analyzed		Prep Date	•	Analytical Batch
Run #1	6P26616.D	1	06/02/16	AC	05/26/16	OP94277	E6P1235
Run #2							

Initial Weight Final Volume 31.2 g 1.0 ml

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	78	19	ug/kg
59-50-7	4-Chloro-3-methyl phenol	ND	190	24	ug/kg
120-83-2	2,4-Dichlorophenol	ND	190	33	ug/kg
105-67-9	2,4-Dimethylphenol	ND	190	69	ug/kg
51-28-5	2,4-Dinitrophenol	ND	190	150	ug/kg
534-52-1	4,6-Dinitro-o-cresol	ND	190	42	ug/kg
95-48-7	2-Methylphenol	ND	78	25	ug/kg
	3&4-Methylphenol	ND	78	32	ug/kg
88-75- 5	2-Nitrophenol	ND	190	26	ug/kg
100-02-7	4-Nitrophenol	ND	390	100	ug/kg
87-86-5	Pentachlorophenol	ND	190	37	ug/kg
108-95-2	Phenol	ND	78	20	ug/kg
58-90-2	2,3,4,6-Tetrachlorophenol	ND	190	26	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	190	29	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	190	23	ug/kg
83-32-9	Acenaphthene	ND	39	13	ug/kg
208-96-8	Acenaphthylene	ND	39	20	ug/kg
98-86-2	Acetophenone	ND	190	8.4	ug/kg
120-12-7	Anthracene	ND	39	24	ug/kg
1912-24-9	Atrazine	ND	78	17	ug/kg
56-55-3	Benzo(a)anthracene	ND	39	11	ug/kg
50-32-8	Benzo(a) pyrene	ND	39	18	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	39	17	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	39	19	ug/kg
207-08-9	Benzo(k) fluoranthene	ND	39	18	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	78	15	ug/kg
85-68-7	Butyl benzyl phthalate	ND	78	9.5	ug/kg
92-52-4	1,1'-Biphenyl	ND	78	5.3	ug/kg
100-52-7	Benzaldehyde	ND	190	9.6	ug/kg
91-58-7	2-Chloronaphthalene	ND	78	9.3	ug/kg
106-47-8	4-Chloroaniline	ND	190	14	ug/kg
86-74-8	Carbazole	ND	78	5.6	ug/kg

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW21 (7-8) Lab Sample ID: JC20934-4

Matrix:

Method: Project:

SO - Soil SW846 8270D SW846 3546

BMSMC, Building 5 Area, PR

Date Sampled: 05/24/16 Date Received: 05/25/16

Percent Solids:

Q

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	78	15	ug/kg
218-01-9	Chrysene	ND	39	12	ug/kg
111-91-1	bis(2-Chloroethoxy)methane	ND	78	8.3	ug/kg
111-44-4	bis(2-Chloroethyl)ether	ND	78	17	ug/kg
108-60-1	bis(2-Chloroisopropyl)ether	ND	78	14	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	78	13	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	39	12	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	39	20	ug/kg
91-94-1	3,3'-Dichlorobenzidine	ND	78	32	ug/kg
53-70-3	Dibenzo(a,h)anthracene	ND	39	17	ug/kg
132-64-9	Dibenzofuran	ND	78	16	ug/kg
84-74-2	Di-n-butyl phthalate	ND	78	6.3	ug/kg
117-84-0	Di-n-octyl phthalate	ND	78	9.7	ug/kg
84-66-2	Diethyl phthalate	ND	78	8.3	ug/kg
131-11-3	Dimethyl phthalate	ND	78	6.9	ug/kg
117-81-7	bis(2-Ethylhexyl)phthalate	ND	78	9.1	ug/kg
206-44-0	Fluoranthene	ND	39	17	ug/kg
86-73-7	Fluorene	ND	39	18	ug/kg
118-74-1	Hexachlorobenzene	ND	78	9.8	ug/kg
87-68-3	Hexachlorobutadiene	ND	39	16	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	390	15	ug/kg
67-72-1	Hexachloroethane	ND	190	19	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	39	18	ug/kg
78-59-1	Isophorone	ND	78	8.3	ug/kg
90-12-0	1-Methylnaphthalene	ND	78	7.6	ug/kg
91-57-6	2-Methylnaphthalene	ND	78	8.8	ug/kg
88-74-4	2-Nitroaniline	ND	190	9.2	ug/kg
99-09-2	3-Nitroaniline	ND	190	9.7	ug/kg
100-01-6	4-Nitroaniline	ND	190	10	ug/kg
98-95-3	Nitrobenzene	ND	78	15	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	78	11	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	190	14	ug/kg
85-01-8	Phenanthrene	ND	39	13	ug/kg
129-00-0	Pyrene	ND	39	12	ug/kg
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	9.9	ug/kg
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its
367-12-4	2-Fluorophenol	78%		30-1	06%
4165-62-2	Phenol-d5	78%		30-1	06%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW21 (7-8) Lab Sample ID: JC20934-4

Matrix: SO - Soil

Method: SW846 8270D SW846 3546 Project: BMSMC, Building 5 Area, PR Date Sampled: 05/24/16 Date Received: 05/25/16 Percent Solids: 82.4

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	76%		24-140%
4165-60-0	Nitrobenzene-d5	89%		26-122%
321-60-8	2-Fluorobiphenyl	90%		36-112%
1718-51-0	Terphenyl-d14	92%		36-132%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client San Lab Samp Matrix: Method: Project:	ole ID: JC2093 SO - So SW846	84-4 oil 8270D BY	' SIM SW846 g 5 Area, PR	3546	Date		05/24/16 05/25/16 02.4
Run #1 Run #2	File ID 4P16648.D	DF 1	Analyzed 06/04/16	By JJ	Prep Date 05/26/16	Prep Batch OP94277A	Analytical Batch E4P886
Run #1 Run #2	Initial Weight 31.2 g	Final Vo	lume				
CAS No.	Compound		Remit	RI.	MDI. Units	0	

					•
123-91-1 91-20-3	1,4-Dioxane ^a Naphthalene	ND ND	3.9 3.9	0.78 0.47	ug/kg ug/kg
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	its
4165-60-0 321-60-8 1718-51-0	Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	81% 61% 78%		15-13 12-14 10-15	18%

⁽a) Not accredited for this compound at the time of analysis, but all method requirements were followed.

Report of Analysis

Page 1 of 1

Client Sample ID: MW21 (7-8) Lab Sample ID: JC20934-4

Matrix: Method:

Project:

SO - Soil

SW846-8015C (DAI)

Date Sampled: 05/24/16 Date Received: 05/25/16

Percent Solids: 82.4

BMSMC, Building 5 Area, PR

	71'1 77°						
1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	GH105210.D	1	05/25/16	XPL	n/a	n/a	GGH5300

Initial Weight $5.0\,\mathrm{g}$

Run #1 Run #2

Low Molecular Alcohol List

AS No.	Compound	Result	RL	MDL	Units	Q
4-17-5	Ethanol	ND	120	84	սց/kg	
8-83-1	Isobutyl Alcohol	ND	120	71		
7-63-0	Isopropyl Alcohol	ND	120	69		
1-23-8	n-Propyl Alcohol	ND	120	49		
1-36-3	n-Butyl Alcohol	ND	120	66		
8-92-2	sec-Butyl Alcohol	ND	120	65		
7-56-1	Methanol	ND	240	58	ug/kg	
AS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
11-27-3	Hexanol	86%		52-1	41%	
11-27-3	Hexanol	88%		52-1	41%	
	4-17-5 8-83-1 7-63-0 1-23-8 1-36-3 8-92-2 7-56-1 AS No.	4-17-5 Ethanol 8-83-1 Isobutyl Alcohol 7-63-0 Isopropyl Alcohol 1-23-8 n-Propyl Alcohol 1-36-3 n-Butyl Alcohol 8-92-2 sec-Butyl Alcohol 7-56-1 Methanol EAS No. Surrogate Recoveries	4-17-5 Ethanol ND 8-83-1 Isobutyl Alcohol ND 7-63-0 Isopropyl Alcohol ND 1-23-8 n-Propyl Alcohol ND 1-36-3 n-Butyl Alcohol ND 8-92-2 sec-Butyl Alcohol ND 7-56-1 Methanol ND AS No. Surrogate Recoveries Run# 1	4-17-5 Ethanol ND 120 8-83-1 Isobutyl Alcohol ND 120 7-63-0 Isopropyl Alcohol ND 120 1-23-8 n-Propyl Alcohol ND 120 1-36-3 n-Butyl Alcohol ND 120 8-92-2 sec-Butyl Alcohol ND 120 7-56-1 Methanol ND 120 AS No. Surrogate Recoveries Run# 1 Run# 2	4-17-5 Ethanol ND 120 84 8-83-1 Isobutyl Alcohol ND 120 71 7-63-0 Isopropyl Alcohol ND 120 69 1-23-8 n-Propyl Alcohol ND 120 49 1-36-3 n-Butyl Alcohol ND 120 66 8-92-2 sec-Butyl Alcohol ND 120 65 7-56-1 Methanol ND 240 58 AS No. Surrogate Recoveries Run# 1 Run# 2 Lim 11-27-3 Hexanol 86% 52-1	4-17-5 Ethanol ND 120 84 ug/kg 8-83-1 Isobutyl Alcohol ND 120 71 ug/kg 7-63-0 Isopropyl Alcohol ND 120 69 ug/kg 1-23-8 n-Propyl Alcohol ND 120 49 ug/kg 1-36-3 n-Butyl Alcohol ND 120 66 ug/kg 8-92-2 sec-Butyl Alcohol ND 120 65 ug/kg 8-92-2 hethanol ND 120 65 ug/kg 7-56-1 Methanol ND 240 58 ug/kg AS No. Surrogate Recoveries Run# 1 Run# 2 Limits 11-27-3 Hexanol 86% 52-141%

Report of Analysis

Page 1 of 3

Client Sample ID: **RA8-GWD** Lab Sample ID: JC20934-5

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 05/24/16 Date Received: 05/25/16

Percent Solids:

File ID DF Analyzed Prep Date **Analytical Batch** By Prep Batch Run #1 6P26387.D 1 05/26/16 IJ 05/25/16 OP94258 E6P1228

Run #2

Initial Volume Final Volume

Run #1 910 ml 1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.5	0.90	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.5	0.98	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.5	2.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.5	1.4	ug/l	
95-48-7	2-Methylphenol	ND	2.2	0.98	ug/l	
	3&4-Methylphenol	ND	2.2	0.97	ug/l	
88-75-5	2-Nitrophenol	ND	5.5	1.1	ug/l	
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l	
87-86-5	Pentachlorophenol	ND	5.5	1.5	ug/l	
108-95-2	Phenol	ND	2.2	0.43	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.5	1.6	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.5	1.5	ug/l	
88-06-2	2,4,6-Trichlorophenal	ND	5.5	1.0	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l	
98-86-2	Acetophenone	ND	2.2	0.23	ug/l	
120-12-7	Anthracene	ND	1.1	0.23	ug/l	
1912-24-9	Atrazine	ND	2.2	0.49	ug/l	
100-52-7	Benzaldehyde	ND	5.5	0.32	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.22	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.23	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.37	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.44	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.2	0.50	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.23	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l	
106-47-8	4-Chloroaniline	ND	5.5	0.37	ug/l	
86-74-8	Carbazole	ND	1.1	0.25	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: **RA8-GWD** Lab Sample ID: JC20934-5 Matrix:

AQ - Ground Water

Date Sampled: 05/24/16 Date Received: 05/25/16 Percent Solids: n/a

Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

ABN TCL Special List

ABN ICL	Special List					
CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	5.0	2.2	0.71	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.27	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.44	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.40	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.61	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.52	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/l	
123-91-1	1,4-Dioxane	13.0	1.1	0.72	ug/I	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.36	ug/l	
132-64-9	Dibenzofuran	ND	5.5	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.55	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.54	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l	OK.
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.36	ug/l	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1:1	0.23	ug/l	
88-74-4	2-Nitroaniline	ND	5.5	0.30	ug/l	
99-09-2	3-Nitroaniline	ND	5.5	0.43	ug/l	
100-01-6	4-Nitroaniline	ND	5.5	0.48	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.71	ug/l	SE ASOCIADO DE
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.53	ug/l	SE ASUCIADO DE
86-30-6	N-Nitrosodiphenylamine	ND	5.5	0.24	ug/l	1. Bru
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	
129-00-0	Pyrene	ND	1.1	0.24	ug/l	Mendez
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/l	1888
					-	e 111C = 1888
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	The state of the s
						CO LICENCIA
367-12-4	2-Fluorophenol	47%		14-8	8%	FIDE

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

ćn

Report of Analysis

Client Sample ID: R. Lab Sample ID: J(

RA8-GWD JC20934-5

J.

AQ - Ground Water

Date Sampled: Date Received:

05/24/16 05/25/16

Matrix: Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Percent Solids: n

n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	34%		10-110%
118-79-6	2,4,6-Tribromophenol	81%		39-149%
4165-60-0	Nitrobenzene-d5	76%		32-128%
321-60-8	2-Fluorobiphenyl	84%		35-119%
1718-51-0	Terphenyl-d14	80%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: **RA8-GWD** Lab Sample ID: JC20934-5

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

Date Sampled: 05/24/16 Date Received: 05/25/16

Percent Solids:

BMSMC, Building 5 Area, PR

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 4P16435.D 1 05/26/16 LK 05/25/16 OP94258A E4P872

Run #2

Matrix:

Method:

Project:

Initial Volume Final Volume Run #1 910 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

91-20-3 Naphthalene ND 0.11 0.032 ug/l

CAS No. Limits Surrogate Recoveries Run#1 Run# 2

4165-60-0 Nitrobenzene-d5 97% 24-125% 321-60-8 2-Fluorobiphenyl 86% 19-127% 1718-51-0 Terphenyl-d14 97% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

XPL

Prep Date

n/a

Analyzed

05/26/16

Client Sample ID: RA8-GWD Lab Sample ID: JC20934-5

File ID

GH105224.D

Matrix: Method: AQ - Ground Water

Project:

Run #1

Run #2

SW846-8015C (DAI)

DF

BMSMC, Building 5 Area, PR

Date Sampled: Date Received:

05/24/16 05/25/16

Percent Solids:

Prep Batch	Analytical Batch
n/a	GCH5301

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	88%		56-1	45%	
111-27-3	Hexanol	98%		56-1	45%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

Client Sample ID:	RA8-GWS
Lab Sample ID:	JC20934-6

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

Date Sampled: Date Received:

Q

05/24/16 05/25/16

Percent Solids: n/a

BMSMC, Building 5 Area, PR

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 6P26388.D 1 05/26/16]] 05/25/16 OP94258 E6P1228 Run #2

Initial Volume Final Volume 910 ml

Run #1 Run #2

 $1.0 \, \mathrm{ml}$

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.5	0.90	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.5	0.98	ug/I
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.5	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.5	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.98	ug/l
	3&4-Methylphenol	ND	2.2	0.97	ug/l
88-75-5	2-Nitrophenol	ND	5.5	1.1	ug/l
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l
87-86-5	Pentachlorophenol	ND	5.5	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.43	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.5	1.6	ug/l
95-95-4	2.4.5-Trichlorophenol	ND	5.5	1.5	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.5	1.0	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	ND	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.49	ug/l
100-52-7	Benzaldehyde	ND	5.5	0.32	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.22	ug/l
50-32-8	Benzo(a) pyrene	ND	1.1	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.37	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.44	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.50	ug/l
92-52-4	1,1 -Biphenyl	ND	1.1	0.23	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l
106-47-8	4-Chloroaniline	ND	5.5	0.37	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: Lab Sample ID:

RA8-GWS JC20934-6

Matrix:

AQ = Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 05/24/16 Date Received: 05/25/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.71	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.27	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.44	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.40	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1,1	0.61	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.52	ug/i	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/i	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.36	ug/l	
132-64-9	Dibenzofuran	ND	5.5	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.55	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.54	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.36	ug/l	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/l	
88-74-4	2-Nitroaniline	ND	5.5	0.30	ug/l	
99-09-2	3-Nitroaniline	ND	5.5	0.43	ug/l	
100-01-6	4-Nitroaniline	ND	5.5	0.48	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.71	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.53	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.5	0.24	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	
129-00-0	Pyrene	ND	1.1	0.24	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	43%		14-8	8%	
4165-62-2	Phenol-d5	29%				

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

fael Infante Méndez IC = 1888

E = Indicates value exceeds calibration range

RA8-GWS

JC20934-6

Matrix:

AQ - Ground Water

Date Sampled: Date Received: 05/24/16

Date Received:
Percent Solids:

05/25/16 n/a

Method: Project: SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	71%		39-149%
4165-60-0	Nitrobenzene-d5	67%		32-128%
321-60-8	2-Fluorobiphenyl	72%		35-119%
1718-51-0	Terphenyl-d14	81%		10-126%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID:	RA8-GWS
Lab Sample ID:	JC20934-6

Matrix: Method:

Project:

4165-60-0

321-60-8

1718-51-0

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 05/24/16 Date Received: 05/25/16

Percent Solids: n/a

Units

ug/l ug/l

24-125%

19-127%

10-119%

Q

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 4P16436.D 1 05/26/16 LK 05/25/16 OP94258A E4P872 Run #2

Run #1 Run #2	Initial Volume 910 ml				
CAS No.	Compound	Result	RL	MDL	U
91-20-3 123-91-1	Naphthalene 1,4-Dioxane	ND 2.80	0.11 0.11	0.032 0.054	uį uį
CAS No.	Surrogate Reco	overies Run#1	Run# 2	Lim	its

86%

81%

101%

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

XPL

n/a

Page 1 of 1

RA8-GWS Client Sample ID: Lab Sample ID: JC20934-6

Matrix: Method: AQ - Ground Water SW846-8015C (DAI)

DF

1

BMSMC, Building 5 Area, PR

Date Sampled:

n/a

05/24/16 Date Received: 05/25/16 Percent Solids: n/a

Prep Date	Prep Batch	Analytical Batch

GGH5301

Run #1 Run #2

Project:

Low Molecular Alcohol List

File ID

GH105225.D

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	
111-27-3	Hexanol	74%		56-14	15%	
111-27-3	Hexanol	99%		56-14	15%	

Analyzed

05/26/16

 $MDL = Method \ Detection \ Limit$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

PROPERTY TO A STANK INC. PROPERTY TO A STAN	E.	-			- 1		AC		rest -	-47	CHAI	5GS Ar Rome 13 29-0200	Custeșt O, Dayte FAX	Dayson m. NJ ("J2 J25 com	r316ơ maia	/3480	Y	` <u>accesso</u>	MES &	1	A0:					eit _	Y65A		٠	20		
Helderson Full relation flowers and the control of	- 1					_		18	roject Have	0 1	1 -		-	4	roe Stud	226.			1121	22		Blo	8			2042	2012	2075			200	Matrix Codes
Townset Chester Porchase NY	S	世	erson	MILM	-Kan	0 P 552	e in	د اء	RWZ	Kelea	se Hr	5C5)	MC) T	and the second	nggar en	vtenVille	**5 Fab	B	7.34	A	Ø	8	Sa Ke								DYY - Drokery Vyales GW - Ground Water Vyvy - Waser
Process of Carlos Carlo		27	Woo	cs+C	he	ster	- 20		and the same of th		- 51100	2.dang	Informa	- (II d								3	000	:5	1	1						SW - Surlace Ventur SO - Soit
Sent Superior Collection Comment Comment		P	rcha	32	N	Υ		ľ	Hum	acao	PR										90	8	_3	30							Ì	SL-Shalps SLD-Restrort OI - Di
Cr Case Ca	P	Day.	· CY	Ta	4	00		- 1	Froarci Ø			Street	Victorius .							7	8	2	2	+2								LIQ - Other Liquid - AIR - Arr
The state of the s	P	q	14-	. 25	7-	040	0		Store Pulchase	Order P		Cay				Statu			Zφ	7	D	耆	V	Ų.								WF - Wipe FB-Field Blenk
Field (1) Point of Collection MECHOT HUS See 1 to 1	3	1.7	AN AC	2.5	tud	t.01	الوائد	Free	Chact Maraner			America	irc.							- 1	TI.	1	3	83								FS-Equipment Numb Ris-Rene Stans TS-Trp Stans
RAG S=6 Statille Ols Ol			- J (Calcalan				-	Phys.	T 1	1.	Bothers .		90	Y	췽	٥								
TARBO (5-G) STATIS (015 TT 50 2 2 2 2 X X X X X X X X X X X X X X X	1		Field	ID / Poir	nt of C	ollection		1	MECHADISMI P	Date	Terror		-	0 or 100	υ	Magni	<u>0</u>	DI SPEE	Q 00		S	I	ď	73	-						ı	LAB USE ONLY
RABD (5-6) SITAL 105 TT SO 2 2 2 2 2 X X X X X X X X X X X X X X	-	4	RA	4-	<u> 51</u>	IS,		\Box		05/23/16	1545	17		5	3		4-4				_	X										£55
SAB-GWD OSTANIK 1235 TT GW 5 3 9 X X X X X X X X X X X X X X X X X X		٦	K A	8	(5	`~ 6 . C=(-		05/21/14	1015	1	_		-		\rightarrow	-				Ž	_	Ŷ,	_	<u> </u>		⊦₋	\vdash			V210
See to Business Boys See	+	9	Mu	121	7	7- Q	5			的[阿] a5/24/以	1120	77	,	_	+	H				H	汁	슺	\dashv	ç		-	_	Н	Н		\dashv	F53
Turnerpord Time (Business days) Data Detectable Information Basic VRRIFICATION	-	3	RA	8-	6	ND				OSHAIK	1235	77		5	3						X	X		X		\vdash					\dashv	745
Total property and the (Business days) Data Detectable information Data Detectable informat	-	6	RA	19-	<u>.G</u>	WS				05/24/16	1440	11	БW	5	3	<u> </u>		2			X [X		Z						\Box		
Total property and the (Business days) Data Detectable information Data Detectable informat	-	-						-+			-	\vdash	-	-	+	+	╁	-	+	-	+		-		-			\vdash	\vdash			
Total property and the (Business days) Data Detectable information Data Detectable informat		-						-			 	-		\vdash	+	\vdash	H	+	+	+	\dashv	\dashv	+			-	-	\vdash	-	zΩ	늬	1
Tutourspand Time (Business days) Data Drive-cable information Market Consumer Byte Business																					士				1017	AL A	SES	ME	IJŹ	$\mathcal{T}_{\mathbf{I}}$		7
Sale 19 Busheven Days For Soil Sale	-										-	1	_		Н		\sqcup	4	\perp	4	4	4			LAB	EL VI	RIF	CATI	IAC	四	7	
3 Day RUSH BIDD Forward BIDD Forward Debug RUSH For A guedus Sample BIDD Forward Debug RUSH For A guedus Sample BIDD Forward	3	1203	Tun	tergund To	me (Du	ninera daya	1)		N 4. E	·	in Spirit	202		On On	ta Deb	weraké	leiton	malian			7,235 7,235	£16.	22.0	A Total	A.	Com	ronts /	/ Врисы	d Insinc	arana.		を 3年の元代
3 Day RUSH BIDD Forward BIDD Forward Debug RUSH For A guedus Sample BIDD Forward Debug RUSH For A guedus Sample BIDD Forward		V	2 \$46. 101	-	Doys F	30,50	il 50	urp]	9	hoopined PRIC (Date			Commen	cial TOT	Lovel								Ada) te	Ra	ort	: /-	mel	4	Λa	641	talere
Dony Right For a greek 5 Sample Commercial The Product Report range		4	3 Day 8	IUSH IUSH	-										ind }		Ë	_		_			وأمرا	th	SV	bc.	14	eth	od		70	D
Sample inventory is verified upon receipt in the Laboratory No. Restricted - Remarks - O.C. Buttersary - Purise Flow date Sample inventory is verified upon receipt in the Laboratory Sample Custody could be documented below each time samples (charge possession, including counter features) Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory is verified upon receipt in the Laboratory is verified upon receipt in the Laboratory Sample inventory is verified upon receipt in the Laboratory is verified upon receipt in the Labor						2000	و کان	art	iles			! =			- 0-	die Pe	_						-									
Sample Custody must be decommended below each three samples change possession, including counter delivery. The part		(atter	714		0		-				Comme	raid "A" a	Retutts	Only, C	-	CM 131	= Floo	Ats + CIC	Sume	Mary	İ		la La-			د_ون			·	11:-	
	秀		Pict	1		2	E	lma . ·		nple Custody o	out he docum								ston, le			il Pier d	hiltery	ı.			Title	uppn I	oceo	7 97	Lauc	1.98 3
	1		اس لا	A	4		05/	24/	16 1100	Fed	EX				2					ZÌ	B	_	_			205	2	- 04	12	1		
Annaharate by Countries By Coun	3	named Annual	negative by the	-			Dan 7	lma.		3					4		· By	_		/	1						4	4 0y.		1		
Authorizated by: Conference of the Conference	3	_								5					East	34	7	_		1 =	C COMPA	_			- appendix of	*		-			T 1	4.16

JC20934: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

JC20934

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

5

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Six (6) samples were analyzed for the ABN TCL list following method SW846-8270D; Naphthalene and 1,4-Dioxane were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 –Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. Initial and continuing calibration verifications meet the required criteria. Analytes not meeting the method % difference criteria meet the guidance document performance criteria for continuing calibration verification of \pm 25 or 40 %, no action taken.

Butylbenzyl phthalate and 2-nitroaniline did not meet the % difference continuing calibration criteria. Results for this analyte qualified (UJ) in samples JC20934-2; -3; -4.

No closing calibration verification included in data package. No action taken, professional judgment.

2. MS/MSD RPD results outside the upper control limits for several analytes but within guidance document acceptable criteria (< 50 % RPD). No action taken, professional judgment.

MS/MSD % recoveries outside the lower control limits for 1,4-dioxane in sample JC20934-2MS/MSD. Non-detects are rejected (R).

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

Rafael refaut

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC20934-1

Sample location: BMSMC Building 5 Area

Sampling date: 5/23/2016 Matrix: Groundwater

METHOD: 8270D

82700					
Result		Dilution Factor	Lab Flag	Validation	Reportable
5.6	ug/l	1	-	U	Yes
5.6	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
5.6	ug/l	1	-	U	Yes
11	ug/l	1	-	U	Yes
5.6	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
5.6	ug/l	1	-	U	Yes
11	ug/l	1	-	U	Yes
5.6	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
5.6	ug/l	1	-	U	Yes
5.6	ug/l	1	•	U	Yes
5.6	ug/l	1	-	U	Yes
1.1	ug/l	1	_	U	Yes
1.1	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
5.6	ug/l	1	-	U	Yes
1.1	ug/l	1	-	IJ	Yes
1.1	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
4.8	ug/l	1	Į	UJ	Yes
1.1	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
1.1	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
2.2	ug/l	1	-	U	Yes
	5.6 5.6 2.2 5.6 11 5.6 2.2 5.6 5.6 5.6 5.6 1.1 1.1 2.2 1.1 2.2 5.6 1.1 1.1 1.1 1.1 1.1 1.1 2.2 4.8 1.1 2.2 4.8 1.1 2.2	Result Units 5.6 ug/l 5.6 ug/l 2.2 ug/l 5.6 ug/l 11 ug/l 5.6 ug/l 2.2 ug/l 2.2 ug/l 5.6 ug/l 11 ug/l 5.6 ug/l 5.6 ug/l 5.6 ug/l 11 ug/l 5.6 ug/l 1.1 ug/l 2.2 ug/l 1.1 ug/l	Result Units Dilution Factor 5.6	Result Units Dilution Factor Lab Flag 5.6 ug/l 1 - 2.2 ug/l 1 - 5.6 ug/l 1 - 1.1 ug/l 1 - 2.2 ug/l 1 - 2.2 ug/l 1 - 1.1 ug/l 1 - 1.1 ug/l 1 -	Result Units Dilution Factor Lab Flag Validation 5.6 ug/l 1 - U 5.6 ug/l 1 - U 2.2 ug/l 1 - U 5.6 ug/l 1 - U 5.6 ug/l 1 - U 2.2 ug/l 1 - U 2.2 ug/l 1 - U 2.2 ug/l 1 - U 5.6 ug/l 1 - U 1.1 ug/l 1 - U 1.1 ug/l 1 - U

bis(2-Chloroisopropyl)ether	2.2	ug/l	1	2	U	Yes			
4-Chlorophenyl phenyl ether	2.2	ug/l	1	~	U	Yes			
2,4-Dinitrotoluene	1.1	ug/l	1	2	U	Yes			
2,6-Dinitrotoluene	1.1	ug/l	1	*	U	Yes			
3,3'-Dichlorobenzidine	2.2	ug/l	1		U	Yes			
1,4-Dioxane	49.6	ug/l	1	2	-	Yes			
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes			
Dibenzofuran	5.6	ug/l	1		U	Yes			
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes			
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes			
Diethyl phthalate	2.2	ug/l	1	-	U	Yes			
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes			
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	7:	U	Yes			
Fluoranthene	1.1	ug/l	1	-	U	Yes			
Fluorene	1.1	ug/l	1	-	U	Yes			
Hexachlorobenzene	1.1	ug/l	1	2	U	Yes			
Hexachlorobutadiene	1.1	ug/l	1	2	U	Yes			
Hexachlorocyclopentadiene	11	ug/l	1	•	U	Yes			
Hexachloroethane	2.2	ug/l	1	-	U	Yes			
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes			
Isophorone	2.2	ug/l	1	1.7	U	Yes			
1-Methylnaphthalene	1.1	ug/l	1	- 2	U	Yes			
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes			
2-Nitroaniline	5.6	ug/l	1	- 5	U	Yes			
3-Nitroaniline	5.6	ug/l	1	-	U	Yes			
4-Nitroaniline	5.6	ug/l	1	-	U	Yes			
Nitrobenzene	2.2	ug/l	1	_	U	Yes			
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes			
Nitrosodiphenylamine	5.6	ug/l	1		U	Yes			
Phenanthrene	1.1	ug/l	1	2	U	Yes			
Pyrene	1.1	ug/l	1	-	U	Yes			
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes			
METHOD:	•	•							
Naphthalene	0.150	ug/l	1	-	U	Yes			

Sample ID: JC20934-2

Sample location: BMSMC Building 5 Area

Sampling date: 5/24/2016

Matrix: Soil

METHOD: 8270D

WETTIOD. 8270D										
Analyte Name	Result		Dilution Factor	Lab Flag	Validation	Reportable				
2-Chlorophenol	79	ug/kg		-	U	Yes				
4-Chloro-3-methyl phenol	200	ug/kg		-	U	Yes				
2,4-Dichlorophenol	200	ug/kg		-	U	Yes				
2,4-Dimethylphenol	200	ug/kg	1	-	U	Yes				
2,4-Dinitrophenol	200	ug/kg	1	-	U	Yes				
4,6-Dinitro-o-cresol	200	ug/kg	1	-	LU	Yes				
2-Methylphenol	79	ug/kg	1	-	U	Yes				
3&4-Methylphenol	79	ug/kg	1	-	U	Yes				
2-Nitrophenol	200	ug/kg	1	-	U	Yes				
4-Nitrophenol	390	ug/kg	1	-	Ų	Yes				
Pentachlorophenol	200	ug/kg	1	-	U	Yes				
Phenol	79	ug/kg	1	-	U	Yes				
2,3,4,6-Tetrachlorophenol	200	ug/kg	1	-	U	Yes				
2,4,5-Trichlorophenol	200	ug/kg	1	-	U	Yes				
2,4,6-Trichlorophenol	200	ug/kg	1	-	U	Yes				
Acenaphthene	39	ug/kg	1	-	U	Yes				
Acenaphthylene	39	ug/kg	1	-	U	Yes				
Acetophenone	200	ug/kg	1	-	U	Yes				
Anthracene	39	ug/kg	1	-	U	Yes				
Atrazine	79	ug/kg	1	-	U	Yes				
Benzo(a)anthracene	39	ug/kg	1	-	U	Yes				
Benzo(a)pyrene	39	ug/kg	1	-	U	Yes				
Benzo(b)fluoranthene	39	ug/kg	1	-	U	Yes				
Benzo(g,h,i)perylene	39	ug/kg	1	-	U	Yes				
Benzo(k)fluoranthene	39	ug/kg	1	-	U	Yes				
4-Bromophenyl phenyl ether	79	ug/kg	1	-	U	Yes				
Butyl benzyi phthalate	79	ug/kg	1	-	UJ	Yes				
1,1'-Biphenyl	79	ug/kg	1	-	U	Yes				
Benzaldehyde	200	ug/kg	1	-	U	Yes				
2-Chloronaphthalene	79	ug/kg	1	-	U	Yes				
4-Chloroaniline	200	ug/kg	1	-	U	Yes				
Carbazole	79	ug/kg	1	-	U	Yes				
Caprolactam	79	ug/kg	1	-	U	Yes				
Chrysene	39	ug/kg	1	-	U	Yes				
bis(2-Chloroethoxy)methane	79	ug/kg	1	-	U	Yes				
bis (2-Chloroethyl) ether	79	ug/kg	1	-	U	Yes				
bis (2-Chlorois opropyl) ether	79	ug/kg	1	-	U	Yes				

4-Chlorophenyl phenyl ether	79	ug/kg	1	- 2	U	Yes
2,4-Dinitrotoluene	39	ug/kg	1		U	Yes
2,6-Dinitrotoluene	39	ug/kg	1	_	U	Yes
3,3'-Dichlorobenzidine	79	ug/kg	1	-	U	Yes
Dibenzo(a,h)anthracene	39	ug/kg	1	-	U	Yes
Dibenzofuran	79	ug/kg	1	_	U	Yes
Di-n-butyl phthalate	79	ug/kg	1	-	U	Yes
Di-n-octyl phthalate	79	ug/kg	1	_	U	Yes
Diethyl phthalate	79	ug/kg	1	_	U	Yes
Dimethyl phthalate	79	ug/kg	1		U	Yes
bis(2-Ethylhexyl)phthalate	79	ug/kg	1	2	U	Yes
Fluoranthene	39	ug/kg	1	~	U	Yes
Fluorene	39	ug/kg	1	•	U	Yes
Hexachlorobenzene	79	ug/kg	1	2	U	Yes
Hexachlorobutadiene	39	ug/kg	1	-	U	Yes
Hexachlorocyclopentadiene	390	ug/kg	1	-	U	Yes
Hexachloroethane	200	ug/kg	1	4	U	Yes
Indeno(1,2,3-cd)pyrene	39	ug/kg	1	25	U	Yes
Isophorone	79	ug/kg	1	-	U	Yes
1-Methylnaphthalene	79	ug/kg	1	*	U	Yes
2-Methylnaphthalene	79	ug/kg	1	*:	U	Yes
2-Nitroaniline	200	ug/kg	1	2	UJ	Yes
3-Nitroaniline	200	ug/kg	1		U	Yes
4-Nitroaniline	200	ug/kg	1	+	U	Yes
Nitrobenzene	79	ug/kg	1	20	U	Yes
N-Nitroso-di-n-propylamine	79	ug/kg	1	*	U	Yes
Nitrosodiphenylamine	200	ug/kg	1	-	U	Yes
Phenanthrene	39	ug/kg	1	*	U	Yes
Pyrene	39	ug/kg	1		U	Yes
1,2,4,5-Tetrachlorobenzene	200	ug/kg	1		U	Yes
	. -					
METHOD:	8270D (S	IM)				
Naphthalene	3.9	ug/kg	1	-	U	Yes
1,4-Dioxane	3.9	ug/kg	1	_	R	Yes

Sample ID: JC20934-3

Sample location: BMSMC Building 5 Area

Sampling date: 5/24/2016

Matrix: Soil

METHOD: 8270D

METHOD:	02/UD					
Analyte Name	Result		Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	78	ug/kg	1	-	U	Yes
4-Chloro-3-methyl phenol	190	ug/kg	1	-	U	Yes
2,4-Dichlorophenol	190	ug/kg	1	-	U	Yes
2,4-Dimethylphenol	190	ug/kg	1	-	U	Yes
2,4-Dinitrophenol	190	ug/kg	1	-	U	Yes
4,6-Dinitro-o-cresol	190	ug/kg	1	-	UJ	Yes
2-Methylphenol	78	ug/kg	1	-	U	Yes
3&4-Methylphenol	78	ug/kg	1	-	U	Yes
2-Nitrophenol	190	ug/kg	1	-	U	Yes
4-Nitrophenol	390	ug/kg	1	-	U	Yes
Pentachlorophenol	190	ug/kg	1	-	U	Yes
Phenol	78	ug/kg	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	190	ug/kg	1	~	U	Yes
2,4,5-Trichlorophenol	190	ug/kg	1	-	U	Yes
2,4,6-Trichlorophenol	190	ug/kg	1	-	U 🕾	Yes
Acenaphthene	39	ug/kg	1	-	U	Yes
Acenaphthylene	39	ug/kg	1	-	U	Yes
Acetophenone	190	ug/kg	1	-	U	Yes
Anthracene	39	ug/kg	1	-	U	Yes
Atrazine	78	ug/kg	1	-	U	Yes
Benzo(a)anthracene	39	ug/kg	1	-	U	Yes
Benzo(a)pyrene	39	ug/kg	1	-	U	Yes
Benzo(b)fluoranthene	39	ug/kg	1	-	U	Yes
Benzo(g,h,i)perylene	39	ug/kg	1	-	U	Yes
Benzo(k)fluoranthene	39	ug/kg	1	-	U	Yes
4-Bromophenyl phenyl ether	78	ug/kg	1	-	U	Yes
Butyl benzyl phthalate	78	ug/kg	1	-	UJ	Yes
1,1'-Biphenyl	78	ug/kg	1	-	U	Yes
Benzaldehyde	190	ug/kg	1	-	U	Yes
2-Chloronaphthalene	78	ug/kg	1	-	U	Yes
4-Chloroaniline	190	ug/kg	1	-	U	Yes
Carbazole	78	ug/kg	1	-	U	Yes
Caprolactam	78	ug/kg	1	-	U	Yes
Chrysene	39	ug/kg	1	-	U	Yes
bis(2-Chloroethoxy)methane	78	ug/kg	1	-	U	Yes
bis (2-Chloroethyl) ether	78	ug/kg	1 😁	-	U	Yes
bis(2-Chloroisopropyl)ether	7 8	ug/kg	1	-	U	Yes

4-Chlorophenyl phenyl ether	78	ug/kg	1	2	U	Yes
2,4-Dinitrotoluene	39	ug/kg	1	-	U	Yes
2,6-Dinitrotoluene	39	ug/kg	1	-	U	Yes
3,3'-Dichlorobenzidine	78	ug/kg	1	2	U	Yes
Dibenzo(a,h)anthracene	39	ug/kg	1	*	U	Yes
Dibenzofuran	78	ug/kg	1	-	U	Yes
Di-n-butyl phthalate	78	ug/kg	1	-	U	Yes
Di-n-octyl phthalate	78	ug/kg	1	5	U	Yes
Diethyl phthalate	78	ug/kg	1	2	U	Yes
Dimethyl phthalate	78	ug/kg	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	78	ug/kg	1	-	U	Yes
Fluoranthene	39	ug/kg	1	4	U	Yes
Fluorene	39	ug/kg	1	+:	U	Yes
Hexachlorobenzene	78	ug/kg	1	-	U	Yes
Hexachlorobutadiene	39	ug/kg	1	-	U	Yes
Hexachlorocyclopentadiene	390	ug/kg	1	-	U	Yes
Hexachloroethane	190	ug/kg	1	_	U	Yes
Indeno(1,2,3-cd)pyrene	39	ug/kg	1	-	U	Yes
Isophorone	78	ug/kg	1	7.7	U	Yes
1-Methylnaphthalene	78	ug/kg	1	-	U	Yes
2-Methylnaphthalene	78	ug/kg	1	-	U	Yes
2-Nitroaniline	190	ug/kg	1	-	UJ	Yes
3-Nitroaniline	190	ug/kg	1	-	U	Yes
4-Nitroaniline	190	ug/kg	1	-	U	Yes
Nitrobenzene	78	ug/kg	1	- 2	U	Yes
N-Nitroso-di-n-propylamine	78	ug/kg	1	-	U	Yes
Nitrosodiphenylamine	190	ug/kg	1	-	U	Yes
Phenanthrene	39	ug/kg	1	-	U	Yes
Pyrene	39	ug/kg	1	1.0	U	Yes
1,2,4,5-Tetrachlorobenzene	190	ug/kg	1	-	U	Yes

METHOD: 8270D (SIM)

Naphthalene	3.8	ug/kg	1	-	U	Yes
1,4-Dioxane	3.8	ug/kg	1	-	U	Yes

Sample ID: JC20934-4

Sample location: BMSMC Building 5 Area

Sampling date: 5/24/2016

Matrix: Soil

METHOD: 8270D

METHOD:	82700					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	78	ug/kg	1	-	U	Yes
4-Chloro-3-methyl phenol	190	ug/kg	1	-	U	Yes
2,4-Dichlorophenol	190	ug/kg	1	-	U	Yes
2,4-Dimethylphenol	190	ug/kg	1	-	U	Yes
2,4-Dinitrophenol	190	ug/kg	1	-	U	Yes
4,6-Dinitro-o-cresol	190	ug/kg	1	-	U	Yes
2-Methylphenol	78	ug/kg	1	-	U	Yes
3&4-Methylphenol	78	ug/kg	1	-	U	Yes
2-Nitrophenol	190	ug/kg	1	-	U	Yes
4-Nitrophenol	390	ug/kg	1	-	U	Yes
Pentachlorophenol	190	ug/kg	1	-	U	Yes
Phenol	78	ug/kg	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	190	ug/kg	1	-	U	Yes
2,4,5-Trichlorophenol	190	ug/kg	1	-	U	Yes
2,4,6-Trichlorophenol	190	ug/kg	1	-	U	Yes
Acenaphthene	39	ug/kg	1	-	U	Yes
Acenaphthylene	39	ug/kg	1	-	U	Yes
Acetophenone	190	ug/kg	1	-	U	Yes
Anthracene	39	ug/kg	1	-	U	Yes
Atrazine	78	ug/kg	1	-	U	Yes
Benzo(a)anthracene	39	ug/kg	1	-	U	Yes
Benzo(a)pyrene	39	ug/kg	1	-	U	Yes
Benzo(b)fluoranthene	39	ug/kg	1	-	U	Yes
Benzo(g,h,i)perylene	39	ug/kg	1	-	U	Yes
Benzo(k)fluoranthene	39	ug/kg	1	-	U	Yes
4-Bromophenyl phenyl ether	78	ug/kg	1	-	U	Yes
Butyl benzyl phthalate	78	ug/kg	1	-	UJ	Yes
1,1'-Biphenyl	78	ug/kg	1	-	U	Yes
Benzaldehyde	190	ug/kg	1	-	U	Yes
2-Chloronaphthalene	78	ug/kg	1	-	U	Yes
4-Chloroaniline	190	ug/kg	1	-	U	Yes
Carbazole	78	ug/kg	1	-	U	Yes
Caprolactam	78	ug/kg	1	-	U	Yes
Chrysene	39	ug/kg	1	-	U	Yes
bis(2-Chloroethoxy)methane	78	ug/kg	1	-	U	Yes
bis(2-Chloroethyl)ether	78	ug/kg	1	-	U	Yes
bis (2-Chlorois opropyl) ether	78	ug/kg	1	-	U	Yes

4-Chlorophenyl phenyl ether	78	ug/kg	1		U	Yes
2,4-Dinitrotoluene	39	ug/kg	1		Ü	Yes
2,6-Dinitrotoluene	39	ug/kg	1		Ū	Yes
3,3'-Dichlorobenzidine	78	ug/kg	1		Ū	Yes
Dibenzo(a,h)anthracene	39	ug/kg	1	-	Ü	Yes
Dibenzofuran	78	ug/kg	1	2	U	Yes
Di-n-butyl phthalate	78	ug/kg	1		U	Yes
Di-n-octyl phthalate	78	ug/kg	1	-	U	Yes
Diethyl phthalate	78	ug/kg	1	-	U	Yes
Dimethyl phthalate	78	ug/kg	1		U	Yes
bis(2-Ethylhexyl)phthalate	78	ug/kg	1	4	U	Yes
Fluoranthene -	39	ug/kg	1	-	U	Yes
Fluorene	39	ug/kg	1	*	U	Yes
Hexachlorobenzene	78	ug/kg	1	27	U	Yes
Hexachlorobutadiene	39	ug/kg	1	-	U	Yes
Hexachlorocyclopentadiene	390	ug/kg	1	7:	U	Yes
Hexachloroethane	190	ug/kg	1	21	U	Yes
Indeno(1,2,3-cd)pyrene	39	ug/kg	1	7.1	U	Yes
Isophorone	78	ug/kg	1	-	U	Yes
1-Methylnaphthalene	78	ug/kg	1	-	U	Yes
2-Methylnaphthalene	78	ug/kg	1	2.0	U	Yes
2-Nitroaniline	190	ug/kg	1	27	UJ	Yes
3-Nitroaniline	190	ug/kg	1		U	Yes
4-Nitroaniline	190	ug/kg	1	770	U	Yes
Nitrobenzene	78	ug/kg	1	-	U	Yes
N-Nitroso-di-n-propylamine	78	ug/kg	1	-	U	Yes
Nitrosodiphenylamine	190	ug/kg	1	-	U	Yes
Phenanthrene	39	ug/kg	1	-	U	Yes
Pyrene	39	ug/kg	1		U	Yes
1,2,4,5-Tetrachlorobenzene	190	ug/kg	1	-	U	Yes
METHOD: 8	8270D (S	IM)				
Naphthalene	3.9	ug/kg	1	-	U	Yes
1,4-Dioxane	3.9	ug/kg	1	-	Ü	Yes
		- · · · · ·	_		_	

Sample ID: JC20934-5

Sample location: BMSMC Building 5 Area

Sampling date: 5/24/2016
Matrix: Groundwater

METHOD: 8270D

METHOD:						
Analyte Name	Result		Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.5	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.5	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.5	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.5	ug/l	1	~	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.5	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	5.5	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	Ų	Yes
2,3,4,6-Tetrachlorophenol	5.5	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.5	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.5	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.5	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	4.8	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	5.0	ug/l	1	-	-	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/i	1	-	U	Yes
bis (2-Chloroethyl) ether	2.2	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	2.2	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes

2,4-Dinitrotoluene	1.1	ug/l	1	2	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
1,4-Dioxane	13.0	ug/l	1	-	-	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.5	ug/l	1	2	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	0	U	Yes
Diethyl phthalate	2.2	ug/l	1	2	U	Yes
Dimethyl phthalate	2.2	ug/l	1	**	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/!	1		U	Yes
Hexachlorobenzene	1.1	ug/i	1	25	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	~	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	21	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	2	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	4.	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.5	ug/l	1	2	U	Yes
3-Nitroaniline	5.5	ug/l	1	-	U	Yes
4-Nitroaniline	5.5	ug/l	1	7	U	Yes
Nitrobenzene	2.2	ug/l	1	- 4	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.5	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1		U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes
METHOD:	9270D /SII	٨٨١				
Naphthalene	0.11	ug/l	1	22	U	Vac
Mapricialette	0.11	ng/ı	1	•	U	Yes

Sample ID: JC20934-6

Sample location: BMSMC Building 5 Area

Sampling date: 5/24/2016 Matrix: Groundwater

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.5	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.5	ug/i	1	_	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	_	U	Yes
2,4-Dimethylphenol	5.5	ug/l	1	_	U	Yes
2,4-Dinitrophenol	11	ug/l	1	_	U	Yes
4,6-Dinitro-o-cresol	5.5	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	_	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.5	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	U	Yes
Pentachlorophenol	5.5	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.5	ug/l	1	-	υ	Yes
2,4,5-Trichlorophenol	5.5	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.5	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.5	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	4.8	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes

4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1		U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	~	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.5	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	2	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	2	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	7	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	_	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	+1	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	4.0	U	Yes
Isophorone	2.2	ug/l	1	5	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	21	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.5	ug/l	1	- 5	U	Yes
3-Nitroaniline	5.5	ug/l	1	-	U	Yes
4-Nitroaniline	5.5	ug/l	1	25-2	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.5	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1		U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1		U	Yes
METHOD:	8270D (SI	M)				
Naphthalene	0.11	ug/l	1		U	Yes
1,4-Dioxane	2.80	ug/l	1	•	-	Yes

	Project Number:_JC20934
	Date:May_23-24,_2016
	Shipping Date:May_24,_2016
	EPA Region:2
REVIEW OF SEMIVOLATILE	ORGANIC PACKAGE
The following guidelines for evaluating volatile or validation actions. This document will assist the make more informed decision and in better serving results were assessed according to USEPA data following order of precedence: EPA Hazardous 2015—Revision 0. Semivolatile Data Validation. The conthe data review worksheets are from the pring noted.	reviewer in using professional judgment to g the needs of the data users. The sample ata validation guidance documents in the Waste Support Section, SOP HW-35A, July QC criteria and data validation actions listed
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance d included:	data package received has beer ata summarized. The data review for SVOCs
Lab. Project/SDG No.:JC20934 No. of Samples:6_Full_scan/6_SIM	
Trip blank No.:	
Field blank No.:	
Field duplicate No.:	
X Data Completeness	
X Bata completeness X Holding Times	X Laboratory Control Spikes X Field Duplicates
X riolding filles X GC/MS Tuning	
	X Calibrations
X Internal Standard Performance	X Compound Identifications
X Blanks	X Compound Quantitation
X Surrogate Recoveries	X Quantitation Limits
X Matrix Spike/Matrix Spike Duplicate	
Overall Comments:_ABN_TCL_list_by_method_SW846- analyzed_by_method_SW846-8270D_(SIM)	-8270D;_Naphthalene_and_1,4-Dioxane_
Definition of Qualifiers:	
J- Estimated results	
J- Compound not detected	
R- Rejected data	
JJ- Estimated Mondatect //	
Reviewer: Kafail Musik	
Tate: June 17 2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
		X2
		
		
- V		
	E- 014%	

All criteria were met _X_	
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE	DATE	рН	ACTION
_	SAMPLED	EXTRACTED/ANALYZED		
			_	
All samples extra	cted and analyzed w	ithin method recommended ho	olding	time. Sample preservation was acceptable.
		_		
Cooler temper	ature (Criteria: 4	+ 2 °C): 5°C		

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

			Action	
Matrix	Matrix Preserved Criteria		Detected Associated Compounds	Non-Detected Associated Compounds
	No	≤ 7 days (for extraction) ≤ 40 days (for analysis)	Use professi	onal judgment
	No	> 7 days (for extraction) > 40 days (for analysis)	_e J	Use professional judgment
Aqueous	Yes	≤ 7 days (for extraction) ≤ 40 days (for analysis)	No qua	lification
Yes		> 7 days (for extraction) > 40 days (for analysis)	.1	UJ
Yes/No		Grossly Exceeded	J	U.I or R
	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use professional judgment	
Non-Aqueous	No	> 14 days (for extraction) > 40 days (for analysis)	اي	Use professional judgment
(VOII-Mqueous	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)	No qua	lification
	Yes	> 14 days (for extraction) > 40 days (for analysis)	1,	UJ
Yes/No		Grossly Exceeded	J	UJ or R

All criteria were metX_	_
Criteria were not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

- _X__ The DFTPP performance results were reviewed and found to be within the specified criteria.
- _X__ DFTPP tuning was performed for every 12 hours of sample analysis.

If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable

Notes: No data should be qualified based of DFTPP failure.

The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique.

List	the	samples	affected:

Actions:

- If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were met	_X	
Criteria were not met		
and/or see below	111	

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:_	_05/25/16:_05/31/16;_06/06/16_(SIM)_	
	GCMS4P	
	Aqueous/low	
Date of initial calibration:_	05/13/2016_(Scan)	
Instrument ID numbers:		
Matrix/Level:	Aqueous/low	

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Initial a	and initi	ial calib		ets the method and guidance volume rance criteria.	alidation document

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

Criteria		Action
Criteria	Detect	Non-detect
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R
Initial Calibration not performed at the specified concentrations	J	UJ
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment
%RSD ≤ Maximum %RSD in Table 2 for target analyte	No qualification	No qualification

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
1,4-Dioxane	0.010	40.0	-40.0	-50.0
Benzaldehyde	0.100	40.0	±40.0	= 50.0
Phenol	0.080	20.0	+20.0	- 25.0
Bis(2-chloroethyl)ether	0.100	20.0	= 20.0	-25.0
2-Chlorophenol	0.200	20.0	= 20.0	-25.0
2-Methylphenol	0.010	20.0	= 20.0	= 25.0
3-Methylphenol	0.010	20.0	= 20.0	-25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	= 25.0	= 50.0
Acetophenone	0.060	20.0	= 20.0	-25.0
4-Methylphenol	0.010	20.0	-20.0	- 25.0
N-Nitroso-di-n-propylamine	0.080	20.0	= 25.0	-25.0
Texachloroethane	0:100	20.0	= 20.0	=25.0
Nitrobenzene	0.090	: 20.0	= 20.0	=25.0
Isophorone	0.100	20.0	- 20.0	-25.0
2-Nitrophenol	0.060	20.0	-20.0	-25.0
2,4-Dimethylphenol	0.050	20.0	±25.0	-50.0
Bis(2-chloroethoxy)methane	0.080	20.0	-20.0	-25.0
2,4-Dichlorophenol	0,060	20,0	=20.0	-25.0
Naphthalene	0.200	20.0	- 20.0	-25.0
1-Chloroaniline	0.010	40.0	-40.0	-50.0
lexachlorobutadiene	0.040	20,0	=20.0	- 25.0
aprolactam	0.010	40.0	=30.0	±50.0
I-Chloro-3-methylphenol	0.040	20.0	= 20.0	= 25.0
2-Methylnaphthalene	0.100	20,0	-20.0	-25.0
lexachlorocyclopentadiene	0.010	40.0	= 40.0	-50.0
,4,6-Trichlorophenol	0.090	20.0	- 20.0	-25.0
2,4,5-Trichlorophenol	0.100	20,0	= 20.0	= 25.0
, P-Biphenyl	0.200	20.0	-20.0	- 25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	-20.0	-25.0
2-Nitroaniline	0.060	20.0	±25.0	-25.0
Dimethylphthalate	0.300	20.0	-25.0	-25.0
2,6-Dinitrotoluene	0.080	20.0	- 20.0	+25.0
Acenaphthy lene	0.400	20.0	-20.0	-25.0
3-Nitroaniline	0.010	20.0	- 25.0	- 50.0
Acenaphthene	0,200	20.0	-20.0	-25.0
2,4-Dinitrophenol	0.010	40.0	50.0	-50.0
4-Nitrophenol	0.010	40,0	= 40.0	= 50.0
Dibenzofuran	0.300	20.0	- 20.0	-25.0
2,4-Dinitrotoluene	0.070	20.0	-20.0	-25.0
Diethylphthalate	0.300	20.0	= 20.0	-25.0
1.2,4,5-Tetrachlorobenzene	0.100	20.0	-20.0	- 25.0
4-Chlorophenyl-phenylether	0,100	20.0	-20.0	-25.0
Huorene	0.200	20.0	±20.0	= 25.0
4-Nitroaniline	0.010	40.0	-40.0	-50.0
4.6-Dinitro-2-methylphenol	0.010	40.0	-30.0	- 50.0
4-Bromophenyl-phenyl ether	0.070	20.0	€20,0	- 25.0
N-Nitrosodiphenylamine	0.100	20.0	- 20.0	-25.0
Hexachlorobenzene	0.050	20.0	-20.0	-25.0
Atrazine	0.010	40.0	-25.0	-50.0
Pentachlorophenol	0.010	40.0	-40.0	- 50.0
Phenanthrene	0.200	20.0	-20.0	-25.0
Anthracene	0.200	20,0	-20.0	-25.0
Carbazole	0.050	20.0	-20.0	-25.0
Di-n-butylphthalate	0.500	20,0	-20.0	-25.0
Fluoranthene	0,100	20,0	-20,0	-25.0
Pyrene	0.400	20.0	-25.0	-50.0
Butylbenzylphthalate	0,100	20.0	-25.0	-50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
3,3'-Dichlorobenzidine	0.010	40,0	-40.0	- 50.0
Benzo(a)anthracene	0.300	20.0	-20.0	-25.0
Chrysene	0.200	20.0	- 20.0	- 50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	-25.0	- 50.0
Di-n-octylphthalate	0.010	40,0	-40.0	- 50.0
Benzo(b)fluoranthene	0.010	20.0	- 25.0	- 50.0
Benzo(k)fluoranthene	0,010	20.0	-25.0	- 50.0
Benzo(a)pyrene	0.010	20.0	-20.0	50.0
Indeno(1,2,3-ed)pyrene	0.010	20.0	- 25.0	- 50.0
Dibenzo(a,h)anthracene	0.010	20.0	= 25.0	- 50.0
Benzo(g,h,i)perylene	0.010	20.0	- 30.0	-50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	= 20.0	-50.0
Naphthalene	0.600	20.0	- 25.0	-25.0
2-Methylnaphthalene	0.300	20.0	- 20.0	-25.0
Acenaphthylene	0.900	20.0	= 20.0	-25.0
Acenaphthene	0.500	20,0	=20.0	-25.0
Fluorene	0.700	20.0	= 25.0	= 50.0
Phenanthrene	0.300	20.0	= 25.0	- 50.0
Anthracene	0.400	20.0	- 25.0	50.0
Fluoranthene	0.400	20.0	-25.0	- 50.0
Pyrene	0,500	20.0	= 30.0	- 50.0
Benzo(a)amhracene	0.400	20.0	= 25.0	- 50.0
Chyrsene	0.400	20.0	= 25.0	- 50.0
Benzo(b)fluoranthene	0,100	20.0	-30.0	- 50.0
Benzo(k)fluoranthene	0.100	20.0	-30.0	- 50.0
Benzo(a)pyrene	0.100	20,0	-25.0	- 50.0
Indeno(1,2,3-ed)pyrene	0.100	20.0	-40.0	= 50.0
Dibenzo(a,h)anthracene	0.010	25.0	-40.0	= 50.0
Benzo(g,h,i)perylene	0.020	25.0	-40.0	- 50.0

Pentachlorophenol	0.010	40.0	-50.0	- 50,0	
Deuterated Monitoring Compounds					

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D	Closing Maximum %D
1,4-Dioxane-d _s	0.010	20.0	-25.0	-50.0
Phenof-d ₃	0.010	20.0	-25.0	=25.0
Bis-(2-chloroethyl)ether-d _x	0,100	20,0	- 20.0	-25.0
2-Chlorophenol-d ₁	0.200	20.0	-20.0	-25.0
4-Methylphenol-d ₈	0,010	20.0	-20.0	-25.0
4-Chloroaniline-di	0.010	40.0	-40.0	- 50.0
Nitrobenzene-d ₅	0.050	20.0	- 20.0	- 25.0
2-Nitrophenol-d ₁	0.050	20.0	-20.0	- 25.0
2,4-Dichlorophenol-d:	0,060	20,0	- 20.0	-25.0
Dimethy lphthalate-d ₆	0,300	20.0	-20.0	-25.0
Acenaphthylene-d _x	0.400	20.0	-20.0	- 25.0
4-Nitrophenol-d ₁	0,010	40.0	-40.0	=50.0
Fluorene-dia	0.100	20.0	= 20.0	- 25.0
4,6-Dinitro-2-methylphenol-dy	0.010	40,0	-30.0	- 50.0
Anthracene-d ₁₀	0.300	20.0	-20.0	- 25.0
Pyrene-d ₁₆	0.300	20.0	-25.0	-50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	-20.0	- 50.0
Fluoranthene-d ₁₀ (SIM)	0,400	20,0	-25.0	- 50,0
2-Methylnaphthalene-d _{in} (SIM)	0.300	20.0	- 20.0	-25.0

If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were met
Criteria were not met
and/or see belowX

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:05/	25/16;_05/31/16:_06/06/16_(SIM)
	tion (ICV):_05/25/16;_06/01/16;_06/06/16
Date of continuing calibration ve	erification (CCV):_05/26/16;_06/03/16;_06/07/16_
Date of closing CCV:	
Instrument ID numbers:	GCMS4P
Matrix/Level:	Aqueous/low
Date of initial calibration:0	5/13/16_(Scan)
Date of initial calibration verifica	tion (ICV):05/13/16;_05/16/16
	erification (CCV):05/25/16;_06/02/16
Date of closing CCV:	
Instrument ID numbers:	GCMS6P
Matrix/Level:	Aqueous/low

DATE	LAB FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#	RFs, %RSD, <u>%D</u> , r		AFFECTED
GCMS4P				
06/01/16	icc879-1.0	-32.8	1,4-dixane*	JC20934-2; -3; -4
06/03/16	cc879-1.0	-23.1	1,4-dioxane*	JC20934-2; -3; -4
05/25/16	cc1209-50	-24.4	di-n-octylphthalate*	JC20934-1; -5; -6
06/02/16	cc1209-25	24.4	1,4-dioxane*	JC20934-2; -3; -4
		40.0	Hexachlorocyclopentadiene*	
		-25.7	2-nitroaniline	
		22.6	2,4-dinitrophenol*	
		25.2	Pentachlorophenol*	
		-26.8	Butylbenzylphtahlate	
		-30.7	di-n-octylphthalate*	

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria except the cases describe in this document. Analyte results are qualified as (J) or (UJ) in affected samples.

No closing calibration verification included in data package. No action taken, professional judgment.

* Analytes with % difference in the continue calibration verification outside the method performance criteria but within the validation guidelines criteria, +40 %. No action taken.

GCMS instrument GCMSZ used in the scan mode for QC samples. Several analytes missed % difference criteria in the continuing calibration verification. QC samples are not validated.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

Criteria for Opening CCV	Culturia for Chains COV	Action		
Criteria for Opening CC.V	Criteria for Closing CCV	Detect	Non-detect	
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R	
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment	
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R	
RRF > Minimum RRF in Table 2 for target analyte	RRF > Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	j	ĽJ	
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification	

All criteria were mel _	Х
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

DATE Analyzed	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
	-			
Field/Equipmen				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_nera/trip/ed	quipment_biank 		in_this_data_package 	

All criteria were met _X
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action
	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		> CRQL	Use professional judgment
		< CRQL	Report at CRQL and qualify as non-detect (U)
Method, TCLP/SPLP LEB, Field	> CRQL	> CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
		> CRQL and > Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

All criteria were met	X
Criteria were not met	
and/or see below	2.5

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Table 7. DMC Actions for Semivolatile Analysis

	Action				
Criteria	Detect	Non-detect			
%R < 10% (excluding DMCs with 10% as a lower acceptance limit)	J-	R			
10% < %R (excluding DMCs with 10% as a lower acceptance limit) < Lower Acceptance Limit	J-	ű			
Lower Acceptance limit < %R < Upper Acceptance Limit	No qualification	No qualification			
%R > Upper Acceptance Limit	J+	No qualification			

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

Matrix:___Groundwater/Soil_____

SAMPLE ID SURROGATE COMPOUND ACTION

_DMCs_meet_the_required_criteria._Non-deuterated_surrogates_added_to_the_samples_were___
_within_laboratory_recovery_limits.______

Table 8. Semivolatile DMCs and the Associated Target Analytes

1,4-Dioxane-d ₈ (DMC-1)	Phenol-d ₅ (DMC-2)	Bis(2-Chloroethyl) ether-d ₈ (DMC-3)
L4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether
	Phenol	2,2'-Oxybis(1-chloropropane)
-		Bis(2-chloroethoxy)methane
2-Chlorophenol-da(DMC-4)	4-Methylphenol-da (DMC-5)	4-Chloroaniline-d4(DMC-6)
2-Chlorophenol	2-Methylphenol	4-Chloroaniline
	3-Methylphenol	Hexachlorocyclopentadiene
	4-Methylphenol	Dichlorobenzidine
	2.4-Dimethylphenol	
Nitrobenzene-ds(DMC-7)	2-Nitrophenol-d ₄ (DMC-8)	2,4-Dichlorophenol-d3(DMC-9)
Acetophenone	Isophorone	2,4-Dichlorophenol
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachforobutadiene
Hexachloroethane		Hexachlorocyclopentadiene
Nitrobenzene]	4-Chloro-3-methylphenol
2,6-Dinitrotoluene		2,4,6-Trichlorophenol
2,4-Dinitrotoluene		2,4,5-Trichlorophenol
N-Nitrosodiphenylamine	ĺ	1,2,4,5-Tetrachlorobenzene
	i	*Pentachlorophenol
		2,3,4,6-Tetrachlorophenol
Dimethylphthalate-d ₆ (DMC-10)	Acenaphthylene-ds (DMC-11)	4-Nitrophenol-d ₄ (DMC-12)
Caprolactain	*Naphthalene	2-Nitroaniline
1.1'-Biphenyl	*2-Methylnaphthalene	3-Nitroaniline
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol
Diethy lphthalate	*Acenaphthylene	4-Nitrophenol
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline
Butylbenzylphthalate		
Bis(2-ethylhexyl) phthalate		
Di-n-octylphthalate		

Fluorene-d _{in} (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether Carbazole	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine *Phenanthrene *Anthracene
Pyrene-d _{to} (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*l'luoranthene *Pyrene *Benzo(a)anthracene *Chrysene	3.3'-Dichlorobenzidine *Benzo(b)fluoranthene *Benzo(k)fluoranthene *Benzo(a)pyrene *Indeno(1,2,3-cd)pyrene *Dibenzo(a,h)anthracene *Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC ² -1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Accnaphthene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-ed)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	

All criteria were met
Criteria were not met
and/or see belowX

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC20934-5	Matrix/Level:Aqueous
Sample ID:JC20877-3	Matrix/Level:Soil
Sample ID:JC20935-1_(SIM)	Matrix/Level:Aqueous
Sample ID:JC20934-2_(SIM)	Matrix/Level:Soil

The QC reported here applies to the following samples: JC20934-1, JC20934-5, JC20934-6

Method: SW846 8270D

	JC209	34-5	Spike	MS	MS	Spike	MSD	MSD		Limits
Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
4-Chioro-3-methyl										
phenol	ND		110	99.4	90	110	70.2	64	34* a	44-121/18
2,4-Dichlorophenol	ND		110	87.4	80	110	65.5	60	29* a	42-120/19
2,4-Dimethylphenol	ND		110	92.2	84	110	70.7	64	26* a	33-132/23
2-Nitrophenol	ND		110	82.1	75	110	64.6	59	24* a	45-118/20
Pentachlorophenol	ND		110	86.3	79	110	60.4	55	35* a	25-151/25
2,3,4,6-										
Tetrachlorophenol	ND		110	107	97	110	78.7	72	30* a	44-122/21
2,4,5-Trichlorophenol	ND		110	94.1	86	110	71.5	65	27* a	51-124/20
2,4,6-Trichlorophenol	ND		110	102	93	110	79.2	72	25* a	53-120/21
Acenaphthylene	ND		110	90.0	82	110	71.7	65	23* a	50-101/22
Anthracene	ND		110	102	93	110	75.7	69	30* a	54-117/22

The QC reported here applies to the following samples: JC20934-1, JC20934-5, JC20934-6

Method: SW846 8270D

Compound	JC209 ug/l	34-5 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
Atrazine Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	ND ND ND ND ND		110 110 110 110 110 110	124 104 108 108 87.6 107	113 95 98 98 80 97	110 110 110 110 110 110	88.8 75.3 77.4 78.5 60.0 75.0	81 69 70 71 55 68	33* a 32* a 33* a 32* a 37* a 35* a	42-152/23 40-123/24 41-127/25 39-127/27 34-128/28 39-122/26
4-Bromophenyl phenyl ether Butyl benzyl phthalate Carbazole Chrysene bis(2-Chloroethoxy)	ND ND ND ND		110 110 110 110	100 115 108 98.6	91 105 98 90	110 110 110 110	73.2 83.5 78.0 73.0	67 76 71 66	31* a 32* a 32* a 30* a	51-124/23 21-146/28 52-116/22 41-128/24
methane 4-Chlorophenyl phenyl	ND		110	74.1	67	110	56.8	52	26* a	46-120/24
ether 2,4-Dinitrotoluene 2,6-Dinitrotoluene	ND ND ND		110 110 110	95.2 115 112	87 105 102	110 110 110	72.4 84.7 82.4	66 77 75	27* a 30* a 30* a	48-121/21 54-123/27 55-125/26
Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate	ND ND ND		110 110 110	89.5 97.2 107	81 88 97	110 110 110	62.1 76.8 76.3	57 70 69	36* a 23* a 33* a	35-130/27 53-112/22 38-129/23
Di-n-octyl phthalate bis(2-Ethylhexyl)	ND		110	128	116	110	90.7	83	34* a	35-145/26
phthalate Fluoranthene	ND ND		110 110	111 102	101 93	110 110	78.3 74.8	71 68	35* a 31* a	34-141/28 47-123/24
Fluorene Hexachlorobenzene Hexachlorobutadiene	ND ND ND		110 110 110	99.3 88.4 77.8	90 80 71	110 110 110	76.2 65.7 58.5	69 60 53	26* a 29* a 28* a	56-117/22 46-125/24 26-121/24
Indeno(1,2,3-cd)pyrene Isophorone	ND ND ND		110 110 110	98.4 81.7	90 74	110 110 110	66.3 63.3	60 58	39* a 25* a	32-130/30 47-126/23
1-Methylnaphthalene 2-Methylnaphthalene 2-Nitroaniline	ND ND		110 110 110	84.0 82.1 113	76 75 103	110 110 110	64.8 63.7 86.0	59 58 78	26* a 25* a 27* a	34-124/25 34-123/24 46-137/23
4-Nitroaniline Nitrobenzene N-Nitrosodiphenylamine	ND ND ND		110 110 110	98.9 75.5 108	90 69 98	110 110 110	74.2 58.1 78.7	68 53 72	29* a 26* a 31* a	38-118/25 35-130/25 46-123/24
Phenanthrene Pyrene	ND ND		110 110	102 107	93 97	110 110	75.1 79.2	68 72	30* a 30* a	48-121/23 43-124/26

Note: No qualifications made JC20934-5 based on RPD results. Professional judgment.

The QC reported here applies to the following samples: JC20934-2, JC20934-3; JC20934-4

Method: SW846 8270D BY SIM

	JC20934-2	Spike	MS	MS	Spike	MSD	MSD		Limits
Compound	ug/kg Q	ug/kg	ug/kg	%	ug/kg	ug/kg	%	RPD	Rec/RPD
1,4-Dioxane	ND	200	20.7	10* a	196	12.2	6* a	52* a	50-150/30

⁽a) Outside in house control limits.

Note: 1,4-dioxane not detected in sample JC20934-2. Non-detects are rejected (R).

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{*} Outside control limit.

All criteria were metX	
Criteria were not met	
and/or see below	

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal area meets the required criteria of batch samples corresponding to this data package.

Action:

- If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Action				
Стиета	Detect	Non-detect			
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	Ji	R			
20% < Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	31	ÜJ			
50% < Area response < 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification			
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J-	No qualification			
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R			
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification			

		All criteria were metX Criteria were not met and/or see below
TARGET CO	MPOUND IDENTIFICATION	
Criteria:		
	ve Retention Times (RRTs) of reported compouring Continuing Calibration Verification (CCV)	
List compour	nds not meeting the criteria described above:	
Sample ID	Compounds	Actions
spectrum fro calibration)] r a. b. c.	a of the sample compound and a current laboral method associated calibration standard (opening must match according to the following criteria: All ions present in the standard mass spectromust be present in the sample spectrum. The relative intensities of these ions must aga sample spectra (e.g., for an ion with an abuntance of the corresponding sample ion abundance must be corresponding sample ion abundance must be evaluated by interpretation.	g CCV or mid-point standard from initial um at a relative intensity greater than 10% ree within ±20% between the standard and indance of 50% in the standard spectrum, ast be between 30-70%). The pole mass spectrum, but not present in the
•	-	
Sample ID	Compounds	Actions
_ldentified_c	ompounds_meet_the_required_criteria	

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

Sample ID	Compound	Sample ID	Compound

Action:

List TICs

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were metX
Criteria were not met
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	Ac	Action		
Стиста	Detects	Non-detects		
%Solids < 10.0%	Use professional judgment	Use professional judgment		
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment		
%Solids > 30.0%	No qualification	No qualification		

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	
-		

		All criteria were metX Criteria were not met and/or see below		
FIELD DUPLICATE PREC	CISION			
Sample IDs: _	JC20934-2/-3	Matrix:Soil		

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: if large RPD (> 50 %) is observed, confirm identification of the samples and note differences. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
Field duplicate analyzed as part of this data package. RPD within the required criteria < 50 % for detected target analytes.						

All criteria were met _	х_
Criteria were not met	
and/or see below	_

OTHER ISSUES

A.	System Performand	ce ₁	
List sa	mples qualified base	d on the degradation of system	performance during simple analysis:
Sample	e ID	Comments	Actions
Action:			
during	sample analyses.	• •	ined that system performance has degraded Program COR any action as a result of ted the data.
В.	Overall Assessment	of Data	Ä.
List sa	mples qualified base	d on other issues:	
Sample	e ID	Comments	Actions
		uired_the_need_to_qualify_the	_dataResults_are_valid_and_can_be_used

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).
- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results

EXECUTIVE NARRATIVE

SDG No:

JC20934

Laboratory:

Accutest, Florida

Analysis:

SW846-8015C

Number of Samples:

6

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Six (6) samples were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

June 18, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC20934-1

Sample location: BMSMC Building 5 Area

Sampling date: 5/23/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	•	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	_	U	Yes

Sample ID: JC20934-2

Sample location: BMSMC Building 5 Area

Sampling date: 5/24/2016

Matrix: Soil

METHOD: 8015C

-Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	120	ug/kg	1.0	-	U	Yes
Isobutyi Alcohol	120	ug/kg	1.0	-	U	Yes
Isopropyl Alcohol	120	ug/kg	1.0	-	U	Yes
n-Propyl Alcohol	120	ug/kg	1.0	-	U	Yes
n-Butyl Alcohol	120	ug/kg	1.0	-	U	Yes
sec-Butyl Alcohol	120	ug/kg	1.0	-	U	Yes
Methanol	240	ug/kg	1.0	•	U	Yes

Sample ID: JC20934-3

Sample location: BMSMC Building 5 Area

Sampling date: 5/24/2016

Matrix: Soil

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	120	ug/kg	1.0	-	U	Yes
Isobutyl Alcohol	120	ug/kg	1.0	-	U	Yes
Isopropyl Alcohol	120	ug/kg	1.0	-	U	Yes
n-Propyi Alcohol	120	ug/kg	1.0	-	U	Yes
n-Butyl Alcohol	120	ug/kg	1.0	-	U	Yes
sec-Butyl Alcohol	120	ug/kg	1.0	-	U	Yes
Methanol	240	ug/kg	1.0		U	Yes

Sample ID: JC20934-4

Sample location: BMSMC Building 5 Area

Sampling date: 5/24/2016

Matrix: Soil

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	120	ug/kg	1.0	-	U	Yes
Isobutyl Alcohol	120	ug/kg	1.0	-	U	Yes
Isopropyl Alcohol	120	ug/kg	1.0	-	U	Yes
n-Propyl Alcohol	120	ug/kg	1.0	-	U	Yes
n-Butyl Alcohol	120	ug/kg	1.0	-	U	Yes
sec-Butyl Alcohol	120	ug/kg	1.0	-	U	Yes
Methanol	240	ug/kg	1.0	-	υ	Yes

Sample ID: JC20934-5

Sample location: BMSMC Building 5 Area

Sampling date: 5/24/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC20934-6

Sample location: BMSMC Building 5 Area

Sampling date: 5/24/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0		U	Yes

	Project Number:JC20934
	Date:05/23-24/2016
	Shipping Date: 05/24/2016
	EPA Region: 2
REVIEW OF VOLATILE OR The following guidelines for evaluating volatile organics were of document will assist the reviewer in using professional judgm serving the needs of the data users. The sample results we guidance documents in the following order of precedence Physical/Chemical Methods SW-846 (Final Update III, December utilized. The QC criteria and data validation actions listed or guidance document, unless otherwise noted. The hardcopied (laboratory name) _Accutest and the quality control and performance data summarized. The	created to delineate required validation actions. This nent to make more informed decision and in better ere assessed according to USEPA data validation ce: "Test Methods for Evaluating Solid Waste, ber 1996)," specifically for Methods 8000/8015C are in the data review worksheets are from the primary data package received has been reviewed
Lab. Project/SDG No.:JC20934 No. of Samples:6	Sample matrix:SoilGroundwater
Trip blank No.:	
Field blank No.:	
Equipment blank No : -	
Equipment blank No.: Field duplicate No.: JC20934-2/-3	
1 1010 00pilodio 110.i 0020007 23 0	
X Data Completeness	X Laboratory Control Spikes
X Holding Times	X Field Duplicates
N/A_ GC/MS Tuning	X Calibrations
N/A_ Internal Standard Performance	X Compound Identifications
X Blanks	X Compound Quantitation
X Surrogate Recoveries	
	X Quantitation Limits
X Matrix Spike/Matrix Spike Duplicate	
Overall Comments:_Low_molecular_weight_alcoh	ols_by_SW-846_8015C
Definition of Qualifiers:	
J- Estimated results	
U- Compound not detected	
R- Rejected data	
UJ- Estimated nondetect	
Reviewer: Again Mark	<u> </u>
Date:June_18,_2016/	A1

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
s		
	<u> </u>	
		20 222
<u> </u>		
<u> </u>		
<u> </u>	<u> </u>	

All criteria were met _	X
Criteria were not met	
and/or see below	2200

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
All samples ana preserved.	lyzed within the red	commended method I	nolding ti	me. All samples properly

<u>Criteria</u>

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples - 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 5°C

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

	All criteria were metN/A Criteria were not met see below
GC/MS TUNING	
The assessment of the tuning results is to determine if the sample instrumer tuning QC limits	ntation is within the standard
N/A_ The BFB performance results were reviewed and found to be within to	he specified criteria.
N/A_ BFB tuning was performed for every 12 hours of sample analysis.	
If no, use professional judgment to determine whether the associated data s or rejected.	hould be accepted, qualified
List the samples affected:	
If mass calibration is in error, all associated data are rejected.	

All criteria were met _X
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial cali	bration:	05/17/16	
Dates of continuing	ng calibration:_05/17	7/16 (initial);_05/2	5/16;_05/26/16_
Dates of final cali	bration verification:_	_05/25/16;_05/26	/16
Instrument ID nur	nber:	GCGH	
Matrix/Level:	Aqueo	us/low	
 00100011 0110	0.00.00.00.00.00		_

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED

Note: Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the column, second column used for confirmation only.

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be \leq 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _X
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL <i>I</i> MATRIX	COMPOUND	CONCENTRATION UNITS
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/trip/ed	quipment_blank	s_included_in_f	this_data_package	
		27		

All criteria were met_	X
Criteria were not met	
and/or see below	_

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene) ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
	_				

All criteria were metX	
Criteria were not met	
and/or see below	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment. List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

SAMPLE ID	Hexanol	SURROGATE DBFM		BFB	ACTION
_All_surrogate_reco	overies_within_la	aboratory_contro	ol_limits		
3 - 22			#3 #35		
001:-::-:					
QC Limits* (Aqueou LL_to_UL_ QC Limits* (Solid La	73_to_123	3to	to	to	-
QC Limits* (Solid-Lo	69_to_121	to	to	to	-
QC Limits* (Solid-M LL_to_UL	to	to	to	to	-
1,2-DCA = 1,2-Dich DBFM = Dibromoflu			TOL-d8 = T BFB = Bron	oluene-d8 nofluorobenze	ne
			ce criteria, LL = k) – 120 % for aqu		
Actions:					
QUALITY		%R < 10%	%R = 10%	· LL %R :	> UL
Positive re:		J	J	J	
Nondetects	s results	l R	1 11.1	Acce	nt l

	QUALITY	%R < 10%	%R = 10% - LL	%R > UL
	Positive results	J	J	J
1	Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met _X	_
Criteria were not met	
and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC20935-2MS/-MSD Sample ID:JC20847-1AMS/-MSD				Matrix/Level:Groundwater/ow Matrix/Level:Soil/ow		
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
MS/MSD%_re	ecoveries_and_RPD_	within_lab	oratory_	control_limits		
	-11150					

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All criteria were met _	X_
Criteria were not mel	
and/or see below	

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD – Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Level/Unit:			
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION	

Actions:

A separate worksheet should be used for each MS/MSD pair.

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _X
Criteria were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT	
Recoverie	es_within_labor	atory_control_limits			
					- 75
	1 - 1				_
	40 90				23

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metX Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:JC20934-2/-3	Matrix:Soil

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
Field duplicat	e analyz	•	 ckage. RPD within labor control limits.	atory ar	d generally acceptable

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met_	_N/A
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
		1466 C			<u>0</u>

Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%	IS AREA = -25 % TO – 50%	IS AREA > + 100%
Positive results	J	J	J
Nondetected results	R	UJ	ACCEPT

2. If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met _	Χ_	_
Criteria were not met		
and/or see below		

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC20934-1

Hexanol

RF = 67.60

[] = (328444)/(67.60)

= 4,859 ppm OK

All criteria were met _X	
Criteria were not met	
and/or see below	

XII.	CHANT	CITATIO	MΙ	INALT	'C
All.	WUMIN	HAHO	IN L	_HVIII	\circ

A. Dilution performed

DILUTION FACTOR	REASON FOR DILUTION		
	DILUTION FACTOR		

Percent Solids		
List samples which have ≤ 50 % solids		

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R) $\,$